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I. INTRODUCTION

This annual report contains investigations on the properties of
nonideal plasmas, which were carried through in the period from 1 Hovember
1978 to 1 November 1979, under ONR Contract N0OOO14-79-0073. Progress
was made in the evaluation of the electrical conductivity and the
thermodynamic functions of nonideal plasmas. Research which was pub-
lished in this period is not included.

Chapter II gives a dimensional analysis of the possible clectrical
conductivities of nonideal classical and quantum plasmas, with and
without thermal effects. Quantum effects are considered since the

electrons are noticeably degenerate for densities n > 1021cm-3 and

temperatures T'~1040K. In strongly nonideal plasmas, y = Ze?nlleT >> 1,
the thermal energy is negligible compared with rhe energy of the
Coulomb microfields, i.e. such plasmas behave like zero-temperature
systems.,

Chapter 111 presents a kinetic theory of the electrical conductivity
of nonideal plasmas, when the electrons have i) a Maxwell and ii) a
Fermi distribution of velocities. This work is based on the quantum
mechanical scattering cross section for an effective, shielded
Coulomb potential, which is applicable to intermediate nonideal conditions,
0.1 < v < 10. For moderate degeneracy, n < n, the conductivitv
depends on a Coulomb logarithm, but not for complete degeneracy,

‘; ]5 3'1
ko 4.828 x 10 'I‘/".

n>>n, where n = 2(2mmKT/h?)
Chapter 1V is concerned with a statistical theory of the free

envrgy of nonideal gaseous (0 < y < 1) and quasi-liquid (1 < vy ~ YC)

plasmas, where Y is the critical interaction parameter of solid




' ;

. plasma. The physical model used considers short and long range Coulomb
interactions through quasi-lattice intcractions and collective electron
and ion waves. The degeneracy effects on the frec energy are discussed
for large interaction parametersy.

Chapter V derives the Hamilton function and the canonical field

variables for a many-component plasma continuum with longitudinal

é Coulomb field interactions. By Fourier analyzing the canonical
fields for random fluctuations the Hamilton function can be used to
calculate the free interaction energyv of nonideal plasmas. This

3 imnethod has, however, not yet lead to concrete statistical applications

& because of the mathematical difficulties associated with the
evaluation of the complex integrals in the multi-dimensional phase

! space of the Fourier amplitudes of the canonical fields.

Chapter VI gives a simple application of the theoretical approach

in Chapter V concerned with the evaluation of the distribution function
of the velocity fluctuations in a neutral one-component gas. The
theoretical distribution function is shown to be in agreement with !
the observations in turbulent gases.

Chapter V11 is an appendix, in which an unrelated subject is
discussed, namely the propagation of stress relaxation waves and their |
use for signal propagation and system detection in water. !
1 The main results obtained are summarized in the abstracts of
| Chapters I1 ~ VII. Other research concerned with calculations of
the electrical conductivity 1) using quantum-field theoretical methods

. of solid state physics and 2) considering the effects of the fluctua-

tions of the Coulomb microfields on the current transport could not be

written up in time, and will be communicated separetely. The same holds

for the Ph.D. thesis of Mr. A.H. Khalfaoui on nonideal plasmas.




I1.  DIMENSIONAL ANALYSIS OF ELECTRICAL CONDUCTIVITY
OF NOMIDEAL CLASSICAL AND QUANTUM PLASMAS

Abstract

By means of dimensional analysis, novel formulas for the electrical
conductivity of nonideal 1) classical and ii) quantum plasmas are derived
based on the axioms of Dupre. In the generai case of a nonideal plasma
with partially degenerate electrons, the conductivity 1s of the form o =

-A -B 1/2 l/2
o YT YQ en 4/m , where Co is a dimensionless constant, A and B

C
are powers, and Yp = eznlé/KT and YQ - eznlé/(ﬁz/mn-%g) are the reduced
(7=1) nonideality parameters of the classical and quantum plasma,
respectively (e, m, n are the charge, mass, and density of the electrons,
KT is the thermal energy, and h is Planck's constant). The known
conductivities are obtained as special cases of this conductivity
formuia, e¢.g., the conductivity o = CO(KT)%/mI/Ze2 of the 1deal, classical

1
plasma,or the conductivity o = Cc(meG/ﬁ3)n @/KT of the high-temperature

metal.




INTRODUCTION

In recent years, numerous measurements of the electrical conductivity
of non-ideal plasmas have been reported,l:ﬁ) which were produced by oven
heating 9-)(medium pressures) and shock wave heating lg)(high pressures) of
alkali vapors and noble gases, with typical pressures ranging from 10n
to 105 bars. In spite of the availability of an approximate kinetic
equation for nonideal plasmas,ll)which considers spatial and temporal
correlations in the collision operator, satisfactory theoretical explana-
tions of the experimental conductivity data on nonideal plasmas are
missing to date. The degree of the nonideality of a fully ionized plasma
is measured in terms of the (dimensionless) interaction parameter ¥y, which
represents the ratio of average Coulomb interaction (Zeznlé) and thermal
(KT) energies (n = electron density, Z = ion charge number, e = elementary
charge),

Yy = ze?n k.

In cgs-unit, y = 1.670 x IO—EanéT_I. The conductivity theory of ideal,
fully ionized Dlasmaslg)agreeS'with the experimental data only if y << 1.
For moderately, 0.1 < y < 1, nonideal plasmas, the ideal conductivity

12)

theory vields much too large conductivity values=——'o¢ - (KT)%&/wanzz (nAh,
where A = {1+(D/p0)2fb =D/po for D >> Py» Py = Ze” [2KT is the impact
parameter for 90° deflections, and D is the maximum impact paramecter.
The clectric shielding length of Debye is related to the interaction
parameter y by

D = [Z/lnr(l+7,)]l/zy_ll?-n_l/3 .
The ideal conductivity theory breaks dowm at higher electron densities

because the Debye radius D loses its physical meaning as an electric

shielding length and upper impact parameter when the number of electrons

O




in the Debye sphere, N_ = 41D3n/3, is no longer large compared with one.

D
ND and vy are related by

Ny = G/ 2/ans2)] 2 4R
For typical nonideal conditions, n > 1020cm—3 and T = lO“OK, the Debye
radius is D < 10_8cm, i.e., is smaller than the atomic diameter, which
shows that the electric shielding concept is not applicable to proper
nonideal plasmas, vy 2 1. Another reason for the inapplicability of the
ideal conductivity theory to proper nonideal plasmas is its assumption
of successive, small binary interactions, whereas in reality a conduction
electron experiences many-body interactions for y z 1.
i In the following, we apply dimensional theory to the derivation of
new formulas for the electrical conductivity of (non-relativistic) ideal
! and nonideal, classical and quantum plasmas. In the most general case
of an electron plasma, the electrical conductivity ¢ is a power function
of the characteristic plasma parameters, ¢ ~ epmqﬁ'r(KT)Snt (i is Planck's
constant). As special cases, the conductivity formulas for the ideal,
classical, fully ionized plasma and the partially degenerate, solid metal

are obtained, The derived formulas for nonideal classical and quantum

plasmas indicate the dependence of o on vy, which can be compared with

the experimental observations.
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THEORETICAL FOUNDATIONS

In a system of reference in which magnetic ticlds are absent, a linear
- >
“ electric current response j =0 E exists, provided that the generating
> -~ . . A : r 1]
* electric field E is sufficiently weak. For any gaseous, liquid, or solid

> 4
medium, the electrical conductivity o = |3|/|E| is given by

g = (mel/m)t (1)
where e is the charge, m is the mass, n is the density, and t is the
(average) momentum relaxation time of the current carriers. Because of

the large ion mass m;, >> m, the main current carriers in a plasma are

i
the electrons. Eq. (1) holds for any perturbed Maxwell or Fermi distribution
; of the electrons.

. - 13) .
Dimensional analysis is based on the axioms of bupre.— "By axiom

1), absolute numerical equality of quantities a and b may exist only when

the quantities are similar qualitatively. That is, a general relation

may exist between two quantities a and b only when the two quantities

have the same dimension. By axiom 2), the ratio of the magnitudes of

two like quantities a and b is independent of the units used in their

measurement, provided that the same units are used for evaluating each. 5
In general, any measurable quantity o(the secondary quantity)

can be expressed in terms of those appropriate quantities a;, i=1,2,,..M

(the primarv quantities), which affect the magnitude of ¢. The general
relationship between the magnitude of the secondary quantity ¢ and the j
magnitudes of the primary quantities a, is a function of the M arguments !

of the form

o= f(a, a,, 33"""‘1\1) . (2)




AN

Application of the axioms 1) and 2) to Eq. (2) demonstrates that the

14)

functional relation f(ai) is the power function

N N
N1, Nza 3.0, a, M. 3)

g=C.a \

gl 2 3

C0 is a dimensionless coefficient, which depends on the nature of the
physical quantity o, and can only be determined by means of a detailed
physical model. In many cases, the order-of-magnitude of C0 is one,
c -~ 1.

In the most general nonrelativistic case of a thermal quantum
plasma, of which the classical thermal plasma is a special case, the

secondary conductivity quantity o depends on the dimensional primary

quantities a; = e(electron charge), as = m(electron mass), a. = fH(Planck's

3
constant), a, = n(electron density), and ag = KT (thermal energy).
The dimensionless constant CO is in general a function of the dimensionless
parameters p/pi of the plasma,
=C{(Z,, m/m,,... cpe e . 4

CO’ g 219 /m19 P/Pl, ) (4)
E.g.,Zi is the ratio of the magnitudes of the ion and electron charges,
m/mi is the electron to ion mass ratio, etc. The electrical conductivity
g and its primary quantities have the following dimensions D(L = dimension

of length, T = dimension of time, M = dimension of mass) and units U in

the cgs—system:

-1

Dlo] =T R ufel = sec ;
Dle] = L3/7M1/2T-] s Ule] = cm%grl/zsec—1 ;
Dim] =M , Ulm] = gr ;
Dinl = ML2T ™! , U] = gr em’ sec ' :
Din] =173 , Uln] = cem ™ ;
DIK™] = ML2T , UKT] = ar em? sec

et T T
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1t is recognized that the secondary and primary quantities depend only
on three basic dimensions which are independent, namely L, 7, and M. Tor

this reason, dimensional analysis provides at most three independent

equations for the determination of the powers Ni’ i=1,2,3,...M in Eq. (3).

—————

That is, at most three powers can be calculated while at least M-3 powers
have to be determined by comparison with experiments or by physical
arguments.

Two of the primary quantities are variables, namely n and KT
(K = 1.380 x 10_16gr cmzseCQQ/oK), whereas the remaining three primary

. -10 3 ! -1
quantities are elementary constants (e = 4,803 x 10 cm/2 gr k sec

-28 -27 ’ -
m= 9,109 x 10 gr, i = 1.054 x 10 2 gr cmlsec !).

The fundamental equation (3) is applied below to the determination

of the electrical conductivity of (nonrelativistic) nonideal, classical

and quantum plasmas, in which the electrons are responsible for the
electric current transport. To illustrate the results, they will be
expressed in terms of the interaction parameter y for Z = 1 and the order~

of -magnitude of fundamental electron energies:

, = ) =  npe? /KT s

‘ Yr E/Eq / (6)
A S
. e KT . (7)
, 1

. EC = e’n h , (8)

. -2
E. = Hh%/mn 73 (9)

f Q
f £, is the order-of-magnitude of the quantum potential enerpgy @ =

Q
> b, W
—(ﬁ7/2m)V2“ 2/p - of the electron in the plasma. EC and ET are the

Coulomb interaction and thermal energies.

T T v e — ORI aA B
——ea e = Ca



CLASSICAL T=0 PLASMA

In a classicai (hiro) electron plasma, in which the thermal cnergy KT
is negligible compared with the Coulomb interaction energy, the conductivity
depends on the dimensional parameters e, m, and n. By Eq. (3),

o = C0 eNlmNan? . (10)

Hence,

- ¥ Y, -1 -3
1Tl @ ey NNy TN

, an
(3/_))N1 - ’3N1 = 0, (J/Z)N] + Ng = 0, —Nl = -1, (12)
These are three independent equations, which determine the powers
Ny, N5, and Ny uniquely,
N,= =l N = b (13)
Bv Fqs. (10) and (13), the conductivity of the zero-temperature,
classical plasma is
1 Iy
0 =C cn/?/m/?- . (14)
s g 1/? 1
Eq. (14) indicates that o = Cowp/(én)  increases proportional to n
1/)
where wp = (4me?/m) © is the plasma frequency. This result was first
. 15) . 16)
derived by Buneman—"and later by Hamberger and Friedman—'for an
electrostatically turbulent T = 0 plasma by means of semi-quantitative

/

1 1
physical argaments, which give Co = ?(mj/m) h for 7Z = 1.
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CLASSICAL T>0 PLASMA
In a classical (h,p), thermal (K1>0) electron plasma, the con-

ductuvity depends on the dimensional parameters ¢, m, n, and KT.

By Eq. (3)

o =c eMmati k™ | (15)
Hence,

o oy N a2y 3N g g N , (16)
i.e.,

SNI SNy 4 2Ny = 0, INp 4 Np RNy =0, -ny - 2N, =1 a7)

These are three independent vquations, which determine three of the four
powers in terms of the fourth,

Ny =1-2N, Ny =-12X , Ny=

) - IN, N, =N (18)
According to Eqs. (15) and (18), the conductivity of the classical,

thermal plasma is

1-2N =14
g = CO e m ‘< n

1
=N wnt (19)

N —

Collecting of powers of N reveals the dimensionless group contained in
Ea. (19), and condenses the conductivity formula to

g = CG(KT/ezn%)N en1/2/ml/2 . (20)

For an ideal (classical) plasma, » = (ne‘/m)t cannot depend on n
since T o n_1 for binary e-i collisions. Hence, o and N are for an
ideal T-0 plasma

o =C (|<'r)3/7/e?ml/2 , N=3/2, (21)

in agreement with kinetic theorylg), which shows that Cq =

l -1
3/4(2w) bZ@HA ~ 10 ', Feor N = 0, Eq. (20) reducec: to o of the classical

T = 0 plasma, Eq. (14).




;” —3-"-lllllllllIlllllIlllIllllIlllllIlllIl!IIllIIllllIIIIllIIIIIllllll-lllIlllllllllllllllll‘

1

For a nonideal (classical) plasma with v-body interactions, we
I-v 2 2=V . . . PO
have T «n and 0 = (ne‘/m)r « n , with v > 2, i.e. N = 3v - 9/2 . 3/2.
Thus, we find for the conductivity of nonideal, classical plasmas

- 1 1
g = COyTNen 6/n16 , N> 3/2, (22)

where Y= EC/ET is the nonideality parameter defined in Egs. (6) -

(8). FEq. (22) expresses the important result that the conductivity of

1
mp/Zn é, decreases proportional to

a nonideal, classical plasma, ¢ = CcYT

~-N
Yp with increasing nonideality Yo since N> 3/2. The exact value of N

can be determined by comparison with experimental data.




T = 0 QUANTUM PLASMA

In a completely degenerate electron plasma, ET «< EQ’ the conductivity

depends on the dimensional parameters e, m, n, and h, but not on KT, By

Eq. (3),
o = C N2 NN . (23)
Hence,
T} = (L3/-’M15T'1)NIMNZL'3N3(ML2T'1)N‘* , (24)
i.e.,
SNy - 3Ny £ 2Ny = 0, AN £ Ny 4Ny =0, SN -y = -l (25)
These are three independent equations, which determine three of the
; four powers in terms of the fourth,
k Ny = 12N, N, = -3 -N, Nj-= ;- + %N, N, = 2N. (26)
! Substitution of Eq. (26) into (23) yields as conductivity of the
completely degenera%e electron plasma
o = C, (—hinoi)N enl/z/ml/2 . (27)
me’

For N = 3/.2, Eq. (27) leads to the conductivity of a solid metal

o = Ca in/e?m? , N=3/2 |, (28)

-1
wherelj) CO « Z ~. For N=0, Eq. (27) reduces to o of the classical

T=0 plasma, Eq. (14).

For complete degeneracy, ET is negligible compared with En ~ %vaz,
1 Y
where UF -~ (H/m)n h is the Fermi velocitv. For this reason, Eq. (27)
is rewritten in the form
_ 1,
5=¢ yNenf/mb (29)
o Q
, where
E 1 -7
f = E./E. = en h/(ﬁg/mn h) 30)

.
: 4
e T o

porbs
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is the nonideality parameter of the completely degenerate electron plasma
for Z = 1, Since N = 3/2 for the T=0 metal, it is to be expected that
N>0 for the completely degenerate electron plasma, i.e. its conductivity
decreases with increasing nonideality YQ’ Eq. (29). This formula is
useful for the interpretation of conductivity data of completely

degenerate electron plasmas, with N as adjustable parameter.




T~0 QUANTUM PLASMA
In a partially degenerate electron plasma, ET§ EQ’ the conductivity

depends on the dimensional parameters e, m, n, KT, and fi. By Eq. (3),

o= c, NNz N3 ey NugNs (31)
Hence,

-1 3 o 1 N y o =3 -2 » =1 N¢

0 o (R NigNe 7N g 2077 N 2N (32)

Ny - 3N3 + 2Ny + 2N = 0 ,

Ny + N, + Ny + Ng =0 . (33)
-N; - 24, - Ng = -1

These are three independent equations, which permit to express three

of the five powers in terms of the remaining powers,
Ny = 1-2A-2B, Np=-3-B, N3=j-
N, 2 A, Ng = 2B . (34)

Combining of Eq. (31) with (34) gives for the conductivity of the

T>0 quantum plasma

1
A 2 A\B 1,
¢ =Cg ( <1 ) (QE—E——) en./zlm/2 (35)
e?n 3 me2

where A and B are powers which can not be determined by dimensional

reasoning.

For A = -1 and B = -3/2, Eq. (35) yields the conductivity of solid

metals at temperatures T>O0,

1
6 13
o =¢c & o7 A= -1, B = -3/2, (36)
9 53 KT
1
wherelz)c0 o 7 h. Eq. (36) expresses the 1/T - lawiz)of the

metallic conductivity at "high temperatures’.
Eq. (35) contains the dimensionless groups 1\ and YQ’ which permit

to rewrite the conductivity formula as

- - 1 1
g = C0 Yo A YQ B en é/nnh. (37)




——
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L me hm e

Since A = -1 for T>0 metals [Eq. (36)) and B = 3/2 for T=0 metals{Eq. (28)],
one can speculate that A $ -1 and B>0 for nonideal, partially degeneratc
plasmas. A and B can readily be determined by means of conductivity
measurements for nonideal quantum plasmas. The theoretical determination
of the nonlinear dependence of o on Yo and YQ in Eq. (37) from a

physical model of more than two-body interactions is left to future
research,

In conclusion, it is noted that we have derived new conductivity
formulas for nonideal classical T>0 plasmas [Eq. (20) or (22)], completely
degenerate plasmas [Eq. (27) or (29)], and nonideal T>0 quantum plasmas
[Eq. (35) or (37)]. These formulas can be used to interprete conductivity
measurements on nonideal plasmas. Once the still undetermined powers
N, A, and B are known empirically, it should be possible to develop a
conductivity theory for nonideal plasmas which provides an explanation
of the vy

and Y, dependence from first principles.

T Q

L.

e v -
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I11. ELECTRICAL CONDUCTIVITY OF NONIDEAL PLASMA

ABSTRACT

The eclectrical conductivity of fully ionized, moderately nonideal plasmas
with interaction parameters 0.1 <y s 1, where y = Ze2 n1/3/KT is the ratio
of Coulomb and thermal energies, is calculated for displaced Maxwell and
Fermi electron distributions, respectively. The electrons are scattered by
an effective Coulomb potential ¢(r) = Zer—1 exp(-r/§), with § = (3n/£mZ)_l/3

| the mean ion distance, which considers binary (0<r s §) and many-body

(§ < r < ») interactions. 1t is shown that the resulting conductivity formula

is applicable to densities up to four orders of magnitude higher than those
of the ideal conductivity theory, which breaks down at higher densities
{ because the Debye radius loses its physical meaning as a shielding length and

upper impact parameter. In the limit of complete degeneracy, the conductivity

formula reduces to that of a solid metal.
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f INTRODUCTTION
-3)

. . o L 1
The theory of the electrical conductivity of fully ionized plasmas based

on the Boltzmann equation, the Fokker-Planck ecquation (derived by expanding the
binary collision integral for the small, successive velocity changes of
Coulomb scattering), or the Lenard-Bolescu equation (taking into account the
diclectric properties of the medium) is in agreement with the experimental data
for rarefied high-temperature plasmas, y<<i. The intceraction paramcter is

. . . . . , 2.1/3 -
defined as the ratio of (average) Coulomb intcervaction (Ze™n ) and thermal (KT)

energies (n is the clectron density and Z the jon charge number),

2 1/3 1/3

y = Ze"n "7/KT = 1.670 x 10”320 /T

in cgs-units which will be used throughout. The conventional transport calcu-

lationsl‘J) give an electrical conductivity of the form ¢ ~ (KT)j/Z/ml/Z

2]1/2

2
e"ZfVl/x

i for classical ideal plasmas, where A = [1 + (D/p,) = l)/pO for D/»po. D is

{ the maximum impact parameter (Debye length), D = {KT/énez(l + Z)n]l/z, and P,

is the average impact parameter for 90° deflections (Landau length), P, = Ze2/2KT.

1

The condition, A>>1 or {nA~10" is satisfied only for not too low temperatures

4)

T and not too high densities n. Conductivity formulas with this Coulomb

logarithm break/down for large interaction parameters y and densities n, since
the Debye radius
. 1/2 -1/2 -1/3
o= [Z/4n (1 + 7)] / Y / n /
. . . -8 )
becomes smaller than the atomic dimension 10 “cm and, thus, completely losces
its physical meaning as an clectric shielding length and maximum inpact parameter.

E.g., tor T = 104 °K, y>100 and D<]0—8cm if n>1020cm_3. Moderately nonideal

plasmas with y~1 are readily gencrated through shock wave compression and exhibit
Co 1 2 5-6) ,
conductivitices of the order o 10 - 10 mho/cm , which are much smaller than

those which would be obtained by applying the conductivity formula for ideal

F, plasmas in the nonideal regime.

;
{
i
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Although there arce some bulk measurements of the electrical conductivity

. . . 5-8 . .
of nonideal cesium and noble gas plasmas available ), theoretical explanations
of these results are still missing. The momentum and cnerpy transport in

9)

weakly nonideal plasmas, y <<1, was treated by Wilhelm by means of an
experimentally shicelded Coulomb potential, which permits to cousider not only
short-range binary (r € D) but also long-range many-body (r © D) interactions. This

)

interaction model sas used shortly afterwards by Rugov1 for the calculation
of the conductivity of weakly, nonideal argon and xenon plasmas with Debyc
shielding.

For moderately nonideal plasmas, 0.1 <y g1, various phenomemlogical approaches
have been used to extend the conductivity formula of ideal plasmas, e.g., Goldbach
et al ) multiply the Debye length D with a free parameter x(p)which is chosen
to match the experimental data, i.e. to compensate for the too rapid decrease of
D with pressure. A kinetic equation has been proposed for nonideal plasmas

2)

by Klimontovichl , which considers spatial correlations and temporal retardation
in the collision integrals. This equation has not yet lead to transport
coefficients because of the mathematical difficulties associated with its solution.
In the following, the momentum relaxation time and the electrical conductivity
of (i) clussical and (ii) degenerate plasmas is calculated for intermediate non-
ideal conditions, 0.1 < y ¢ 1. For this region of interaction, the concept of
Debye shielding already breaks down since the number of particles in the Debye

sphere 4nD3/3 is no longer large compared with one for y > 0.1, This difficulty

can not be remidiced by replacing D with the quantum mechanical shielding length

(even when thermal effects are %ncluded)l3)
1/2 h 3n,1/3
= , k , = yaedl
DF ("do/ F) % mel kF (8ﬂ)
; . -8
which is of the same order as D in most hipgh pressure plasmas, e.g. I)F ~ 10 cm
) 20 -3 . s - . . L
for n = 107" ecm . From the definition of the mean particle distance, it is clear
, ; P W . . :

that the mean ion distance 6 ~ n, separates the region in which an electron

a 4 R ' .
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experiences few - body encounters (r s ¢) from the region in which an electron
experiences many - body interactions (r > §8) in a nonideal plasmas, as long as
§ > ]0_8 cm (ni < 1024 cm-3). Thus, the mean ion distance evolves naturally
as the characteristic interaction distance for nonideal plasmas, for which
Debye and Fermi shielding fail.

We calculate first the electrical conductivity of plasmas with (i) Maxwell
and (ii) Fermi distributions of the electrons, when all ions have the same
charge number. Then, we generalize the conductivity formulas for plasmas
with several ion components of charge number Z;, i =1, 2, ... . The electrons
are assumed to be scattered by the exponentially decaying Coulomb potential
$ = Zer_l exp(-r/§) which takes many - body interactions at distances r > ¢
into account. The considerations are applicable only tomoderately nonideal

conditions, 0.1 < y < 1, up to densities n << lO24 cm,

For solid state densities and larger densities, n 2 1024 cm—3, we have
§ < 10-.8 cm and the chosen interaction potential ¢(r) is no longer valid. For
2 -
densities n 2 10"4 cm 3, the Coulomb field of the ions is changed by polari-

zation of the bound electron cloud, so that the free clectrous are scattered

as in solids by the ions. For this reason, plasmas in the solid phase are

not treated herein.
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PHYS1CAL. FOUNDAT1ONS

The electrical conductivity o of any pascous, liquid, or solid medium, in
which the clectrical current transport is due to c¢lectrons, is proportional
to the electron density n and the relaxation time 1 of the average momentum
<m$vﬁ of the electrons (m is the electron mass and e ~ 0 is the elementary
charge)

g = (neZ/m) T . (1)
Eq. (1) reduces the calculation of ¢ to the evaluation of 1. The relaxation time
T is determined by the scattering potential and the (classical or quantum

statistical) kineties of the electren gas in the clectric field.

In proper nonideal plasmas, the region 0 < r € § of binary and few - body
} collisons and the region § < r < « of many - body interactions are bounded by

the mean ion radius,
@5 /Hn, = 1, & = (37/4mm) V'3, 2)

since electric Debye shielding exists only for weakly nonideal conditions, y << 1.

For this reason, the effective Coulomb potential of Z times charged ions is in

plasmas of intermediate nonideality
o(r) = Zer ! exp(-r/8), O <r < |, 0.1 <y s 1. (3)

Eq.(3) is no longer applicable to plasmas with densities comparable to solids. It

o contains the binary and few - body collisions at distances 0 < r ¢ § and the
many - body interactions at distances § < r < o,

> >
The differential cross section o(0,g) for the scattering (g - g *) of

clectrons by the potential (3) is in the center of mass systcmlA)
y 2
a(u,g) = (Zcz/Zm)Z/[g2 sinz(O/Z) + uz]h &)
where
> > > > - > ->
= » % = - * o= gk — .
0 =3(g,8%), g=v -V, 8 vk - v, (3) ,
: and
: u = H/2mé . (6) i

i
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The electron and ion velocities vefore and atter the interaction are designated

- BY

by v i and v*¥ |, respectively. The specd u eorresponds to a de Broglie
C ’ A ] 1 :

wave length of the order A - &0 For u > 0 or > w, Eq.(4) reduces to tine

Rutherford cross section.

The scattering cross section 5(U,g) is strictly valid only in the Born
npproximutiunls). Contrary to what onc might expect in general for the latter,
Eq. (4) describes in good approximation the scattering in the exponentially
decaying potential (3) because of the peculiarity of the Coulomb interaction.
The Coulomb interation ¢ -~ 1/r bhas the unique property that the Born approximation
and the exact wave mechanical approach give the same scattering cross section
(identical with the Rutherford formula), In the region 0 < r < §, the
interaction potential (1) is practically Coulombic, and thus the Born approxi-
mation gives the correct solution. In the rvegion § < r < «, the interaction
potential (1) is citectively screened, i.e., the bBorn approximation gives th.
correct solution because 4(r) is small. Tn the transition zone r - »~, the
Born approximation holds tairly woll far recnons of continuity.

The relaxation time v is obtained by cvaluation of the collision inteprals
for the cvlectron momentun mxo for the (i) classical and (ii) degenerate plasma,
respectively.  Both in the cases of classical and Fermi statistics, the particle

-

h » .
velocitices v 1 and v:“ i before and after the interaction are interrelated by the
: &

(S0 3

conservation equations for momentum and encrpy.

——ee——h— - e .
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CONDUCTLVITY OF CLASSITCAL PLASMA

According to kinetic theory, the averaye momentum density n m(-’cu.-— ’uji—')
exchanged per unit time between clectrons and ions, interacting with the Coulomb
poteatial (1), is given by the collision intepral for m\;u, which determines

the momentum relaxation time v o,

—am(sv > - <y )/ o=
[y i
> . > > - > 4 (., ., ., » >
w [ v I ) ) = 0 ) T e ) dide Ay (7)

The scatteringe cross secetion o(v,g) is given in Lg.4) and the solid angle clement

| . . ) . . . - Fs
is di% = gin v di d<. In response to an applicd clectrice Vicld E, the c¢leetrons

- »
and fons drift with velocities <v o+ and \?vi:' 0 that their distribution ionctions
e

arce digplaced Maxwellians,

{ (:" Yy = n (m /2%KT )3/2 o'-'p'—lm (\; - KT ) c=e,d (8)
5y st s’ 7 5 LTI | " g S

Eq.(8) represents a  S-moment-approvimation to the nonequilibriua scolution of the

6)

- ] . . C e 7 .
Boltzmann equation. The perturbations of t (v ) due to viscous stressces and
G

heat flows are neglected in Eq.(8), since they yield only corrections of
higher order to the conductivity.

- ) . 9) .
The cottision integral (7) is inteprated by standard nethods™ for subsonie

) - > > e 112 . . .
drift velocities, ! <voroo- <v,L?‘ ! < (2T /m) , with the usual approximations
[§]
(m ., =mm,/(m +m) *m Zwm, T =m [T /m) + (T./m.)] T Ty.
el ¢ 1 (&4 i (o es €5 S . 1 i o
- .
For supersonic drift velocities, a linear cesponse 7 = ob between ceurrent donsity

b . e > . 9y . oo ; . .
j and clectric field E does no longer oxist, Mhe resuliting relaxation tine is

7)

. 13
piven by:

| /

i s l—] = 2(2(\"1‘/um)1/'2 n, , ()
[ { 0 = 2(@2/ K1)° L, . (10)
F -1

‘ -

| e TNC ‘ Gan
i wheroe

t . 9 0/

’P Ao }’.KT/muz = (8u/W) (dan/37) '/}l{'[' (12)
!
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aud
B ) = - T - tnx- f D" " mmt) (13)
m=1
is the exponential integral of order one (' = 0,477 ... = Fuler's constanL).lg)
The latter satisfies the inequaiitics, for x - U,ZJ)
%Fu(] + 2/x) < cXEl(x) SO+ 1), o+ < c‘u](x) < ¥, (14)
Accordingly, Eq.(l1l) yives formally for small and large arcuments = = A—],
L=z (A s A o> , (15)
L ~ A s L o<< ] . (16)

Combining of Eqs. (9) ~ (12) with Fq. (1) vields the desired electric
conductivity of the clussical plasma of intermediate nonideality, 0.1 < ¢ € 1:
3/2

/2(2nm)1/2 e2

o = 3(KT) Zl (n
whore
E . -2 -2/3

L. = {n[8mh " (4un/32) KT}, Lo»e ], (18)
! o= gml 2 am/37) 23 kr Vo< 1. (19)
i
t by Eqs. (15) - (16).1It is instructive to regrite & in terms of the thermal and
i quantum potential encrgies of un electron,

7 )

! A = 8E/E, £, = KT, By =0 /mé . (20)

The conductivity formula (17) differs from the conductivity of the ideal

1-3 . . .
plasma ) mainly through the term L. The latter has the form of a Coulomb
3 logarithm, L = fn A, for A -~ 1, i.c. lor all deasitices n and temperatures T for
which the plasma is nondegenerate, ET . EQ + Fqo(20). Numerically,

A= 3482 w10 gz 3 (21) '

1-3)

)
The corresponding argument JD = 2KT D/ZeT of the ideal Coulomb logarithm s
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Table | compares A of the nonideal plasma and of the ideal plasma for large

D

- . " 4 o, . .

densities noand the typical temperature 10 = 10 K. It is seen that tn .'\“ [
(0]

. . - - 18 -3
the ideal plasma is unacceptably small for densities n -2 U cm , whereas
Ve . , - . 22 -3
tn M ot the nonideal plasma has reasonable values up to densities no< 10 cm T,
S 4 . Lo . - .
ir =10 K. The conductivity formula (17) holds, therefore, for densitics n

up to 4 orders of magnituade higher than the conductivicy formuia of the ideal

plasma. Eq.(17) is net applicable to n - T roveons for which & o 1, L.e.
E'l‘ < I-‘,“. Eq.(20), sionce in this case the cloctrons wounld be devenerate.

TABLE 1: A and /‘.D versus n v [ - ]()a “K and 72 = 1.

= () N
})L(LCI_,J.L_. 1018 o 1020 o ‘l_(_)_f_z o “i(lz_[‘___,_ o
. \ 3 2 - 2 O
A 3.482 % 10 1.616 x 10 0.750 x 10 0.348 » 10
1 0 , -1 . -2
A 1.035 x 10 1.035 x 10 1.035 = 10 1.035 x 10

The conductivity formula (17) becomes in cgs - units or practical units

(Y x 10“ sec"l = 1 mho cm—l),

o g i _ ’ -1
s = 1396 % 108 7372 /2 en A [see” '] = 1.549 % 1074 27277 t A fmho en ] (23)

4 o . 1
where 4 is given in Eq. (21). Accordingly, if T = 10 °K and 2 =1, o = 1.899 x 10

18 (;m_3 and o = 2.097 x 1()] mho Cm"l for n = 1020 cm“j.

mho (:m—1 for n = 10
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CONDUCTIVITY OF QUANTUM DPLASMA
The clectrons in a plasma become degenerate if thely thermal DeBroglic

wave leneth is larger than the mean clectron Jdistance, .o at densities (h=27h)

B ‘ ‘)
n o 2 KT/02)3/2 < 4828 x 1015 /2 (24)
. I 4 o . . 21 -3 . )
E.ges Yor 't = 10 K, degeneracy requires n > x 10 cm T, in view of their
large mass m; > om, the ions can be treated as classical, The momentum relaxation
time © of the degenerate electron gas is determined by the quantum statistical
. i -+ 19
collision integral for mve, )
-> >
- nm(<v > = 2y, ¥)/f1 =
e i
> > -> 1.3 > > oy 1.3 >
veod v {E (v™E,(WE[1 - hT (v - f (v f (v )1 - hif ‘y*
m f f o{ v( e) i( i)[ 2 e( c)] c( 0) 1( 1)[ 2 e c)]
) > -
x g u(0,y) db dve dvi (25)

where the scattering cross section o(9,g) between clectrons and ions is priven by
Eq. (4). The solutions to the velocity distributions are the displaced
Maxwellian (8) for the ions (s = i) and the 5-moment Fermi approximation for the

clectrons,

» . 3 I > 2 -1 .
f (v ) =2(m/h)” {1 + explzm(v_ - v )7 ~ u|/KT | . (26)
e ¢ 2 e e
The chemical potential w = yu(n, T) is determined by the integral functional

(f(e ; ) de

= If(c ;i .
n Jle (:’ u) ¢ o
. . e =z . . . o >
Again, a linear response j = ob exists for small drift velocities <v i>
Cy

»
]

or weak electric ficlds E Integration of Eq.(29) yiclds, after standard

approximations, for the relaxation time of the degencrate electron gas:

/
18,2172 etz?ng
1 = _3_(;{_1) / ¢ ,_ﬂL___Q. —— (27)

«&1) 2R, 1)

where




27 ,
and
—
O(n,T) = ‘—3(1 + 2700y ) n <. n(r), (30)
n
R , /4 —2 n . o
(n,T) = 73 (1 +2 "<+ ..., nooa(h), (31)
W - n
but
¢
172 o 2 /2 -4/3 )
0(n,T) = % 3"4 M2y -5~12-v(~3l‘,-‘-~-- N o h . ueen(r), (32)
n n
1/2 2 2 -4/3 .
R,y = 3— B+ - 5 + o, neen(D). (33)
had n

Equations (30) - (31) and Eqs. (32) - (33) result from expansions of the Fermi
distribution (26) in the collision integral (25) for densities n << B(T) and
n >~ B(T) , where

- 9
N = 2(2m k1R 32

(34)
is the critical density which separates the degenerate and non-degenerate regimes.

These series are based on expansions of the normalization integral of Eq.(26),

which gives the chemical potential p explicitly as a function of n and T,

R - 2 -3/2 . ~
oo+ 2P e oL L a A, (35)
KT n n 4 n

9 2
TS VAR V8 [ ! LISV B AT I 4o (T (36)
KT 4 5 12 4 4 80 VLT sisoonon

Combining of the conductivity formula in Eq. (1) with the relaxation time of
Eq(27) yields for the electrical conductivity of the degenerate electron plasma

of intermediate nonideality, 0.1 <Y 5 1:

3(1<'1')3/2 R(n,T) .
= 1/2‘2“ (37)
8(2m) e Z L
Q
whete L, is given by Eq.(29). In the limiting cases of large and small values of
ﬂf
2
b, = (nlsh Q] AQ o, (38)
I 2
2
= A0 T ¢ P :
17? 3I\\(n,[), rQ i, (39)




since AQ = (2/3)AQ by cowmparison of Egs.(29) and (12).

For n/;l > 0, Fqs.(37) and (38) reduce to the classical conductivity, Eqs.
(17) and (18), since R(n,T) - 4/vn  and Q(m,T) » 3/2 for n/n » 0 by Eqs.(30)
- (31). On the other hand, Egqs. (37) and (39) pive in the limit of complete

Jdegeacracy, n/n > e

3
9h
e . (40)
2 The Z I.Q
where
o, 2/3
3 .3 1/3 Z v
R SIS : (41)
by Eqs. (32) and (33). Fuqations (40) ~ (41) combine to the conductivity iormula
2 3
157 2x.1/3 h™n )
o= e G 57 53 (42)
2 me Z

Equation (42) agrees with the expression for the conductivity of a low temperature
20
metal.—-'-)
. , N s : , ~1
For numerical eovaluations, Eq.(42) is stated in cgs$ units (sec ) and

. . -1
practical units (mho em ),

g = 4.498 x 10—6 Zﬁs/j n [sec—ll = 4.998 x 10"16 Z"‘)/j n {mho vm‘]]. (43)

- 2. . 6 -
Accordingly, o 7 & x 104 mho cin ! for n = 10 ¢ em™3 and v 9 x IO) mhio cm 1

1024 cm_3, if Z = 1.

for n




GENERALIZATION

Nonideal plasmas exhibit frequently not orly a high degree of
single ionization but also multiple ionization, due to lowering of
the ionization energies by the internal Coulomb f{iclds, and over
lapping of the atomic wave functions at sufficiently high pressures.
In an electrically neutral plasma with N species of ions (i) of

charge Zic and density n the electron density n and entire ion

i,

density n(i) are related by

N
n(i) = Z ni . (44)
i=1 i=1

=}
]
122
~N
=
-

The characteristic interaction radius § of the Coulomb ficld of each
ion is within the many-component plasma

- ’lh

§ = {4mn(i) /3] © . (45)
Since the probabilities for interaction between the electrons
and ions of type i = i, 2,...N are additive, the momentum relaxation

time of the electrons is
B N
S I (46)

where Ti is the relaxation time of the momentum exchange of the

electrons with ions of type 1i.

Classical Plasma. By Eqs. (1), (46), and (9)-(10), the conductivity

of the many-component plasma with Maxwell electron distribution is

in the Lorentz approximation

3
3(KT) %

(47)

g = - 1
2(2mm) bez § (ni/n)Z?-L

i=]
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I. is given by Eq. (11) in general, and the approximations (15) and
(16) in the limits A >> 1 and A << 1, respectively, where now
A = BKT/(h? /ms2) . (48)

Quantum Plasma. By Egs. (1), (46), and (27), the conductivity

of the many~-component plasma with Fermi electron distribution is in

the Lorentz approximation

3
3(KT) : R(n,T)

g = . (49)
1/, 5 N 2
8(2m) Me? Y (n,/m)Z,.L
L& 1 i Q
i=1
LQ is given by Eq. (!8) in general, and the approximations (38)
' and (39) in the limits AQ »> 1 and A0 - 1, respectively, whege
now
{
Ay = (16/3)KTQ(n,T)/ i /m§”) . (50)

For a plasma with only one ion component, we have N = 1,

-1
Zj = 7, ni/n = 72 , and Eqs. (47) and (49) reduce to the previous

formulas (17) and (37), respectivelv. In case of the many-compnent

plasma, not only the electron density n but also all ion densities n,

have to be known for the evaluation of the couductivity.
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Iv, STATISTICAL THERMODYNAMICS OF NONIDEAL PLASMA

Abstract

A quantum statistical theory of the frce cnergy of a nonideal electron-ion
plasma is developed for arbitrary interaction parameters 0 < y < Yc
(y = ZentG/KT is the ratioof mean Coulomb interaction and thermal
energles), which takes into account the energy eligenvalues of (1)
the thermal translational particle motions, (i1) the random collective
electron and lon motions, and (111) the static Coulomb interaction energy
of the clectrons and ions in their oscillatory equilibrium positions.
From this physical model, the interaction part of the free energy is
derived, which consists of a quasi-lattice energy depending on the
interaction parameter y, and the free energles of the quanitized electron
and ion oscillations (long range interactions). Depending on the degree
of ordering, the Madelung "constant" of the plasma is a(a) = a for y>>1,

1

aly) = a for vy > 1, and a(y) «v ' for y << 1, where « ~ 1 is a constant.

The free energy of the high-frequency plasmone (electron oscillations) is
shown to be very small for vy » 1, whereas the free encrgy of the low-
frequency plasmons (ion oscillations) is shown to be significant for

y > 1, i.e. for proper nonideal conditions. For weakly nonideal plasmas,

y <~ 1, both the electron and 1lon oscillations contribute to the free energy.
Ibus, novel results are obtalned not only for proper nonideal (y > 1)

but also fer weakly nonideal (y << 1) plasmas. From the general formula

tor the free interaction energy AF of the plasma for 0 < y « Yc’ simple

analytisal expressions are devived for AF In the Uimiting cases, vy >> 1,

y -1, and y ~< 1.
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INTRODUCTTON
In the classical work of bebye and Hueckel on electrolytes, the total
Coulomb interaction enerpgy is calculated from the continuum theoretical
picture of every ion interacting with its surrounding space charge cloud.
Using more sophisticated methods, similar results were obtained for
. 1 . . 2
weakly nonideal plasmas (y<<1) by Mayer™ (cluster c¢xpansion), Ichikawa
. . 3 , 4 . .
(collective variable approach™), Vedenov and larkin (graphical density
. 5 . . .
expansion), and Jackson” (hydrodynamic¢ contisuum interaction model).
Based on different methods and approximations, investigations of moderately

(v > 1) and strongly (y>>1) nonideal plasmus were given by Berlin

6
and Montroll, Theimer and Centry7, Ecker and Kroe]ls. Ebeling, Hoffman
9 Syl 10
ar' Kelbg”, and Varobev, Norman and Vilinov' | respectively.
In spite of differences in the theoretical approaches, the leading

terms of the analytical results for proper nonideal plasmas (y>1)

give essentially the same formula for the free plasma cnergy, AF/NKT = -ay +
. . . L2 1/3 .
blny + ¢, due to Coulomb interaction, wheire vy = Ze™n /KT is the
g ratio of electron - ion interaction energy and thermal energy, and

a, b, ¢ are constants depending on the respective approximations
and assumptions. The thermodynamic functions of strongly nonideal
plasmas (y:r»>1)were also determined with the help of Monte Carlo and

computer metheds by Brush, Sahlin, and Tellerll, Hansenlz, Dewittl3,

4
and Theimerl , respectively. Although computer methods provide limited
phycical insight, they are useful for checking the quantitative validity

of analytical theories.

At sufficiently high electron densities, for which ¥ > 1, classical

.. . . L , 15 .
statist ical theories fail due teo thermodynamic instability” ) which is

R e r:M
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inhibited by quantum mechanics. The classical plasma pressure would collapse for

vy > 1 duz to the negative electron-ion interaction energy, whereas in reality

the pressure remains positive in a plasma due to the Ferml pressure (exclusion
principle) of the electrons. For these reasons, we present herein a quantum-

statistical theory for nonideal plasmas based on concepts similar to those

16). The application of this model to proper

used by Debye for solids
nonideal plasmas (y > 1) is justified since a plasma exhibits a quasi-
crystalline structure for y » 0.1 before it undergoes a diffuse transition
into a solid, metallic state at a critical value Yoo The roll of the
longitudinal phonos of the Debye theory is assumed by the gquanta of the
plasma oscillations (plasmons) in the case of the quasi-crystalline plasma.
The theory is also applicable to weakly nonideal conditiuns, since the quasi-~
lattice energy reduces for weak ordering, y << 1, to the free interaction
energy of weaklv nonideal nlasnas.

The theory to be presented takes into consideration (i) the encrgy
eigenvalues of the random, collective electron and ion oscillations and
(ii) the static Coulomb interaction energy (quasi-lattice energy) of the
electrons and ions in their oscillatory equilibrium positions. Thus,
all significant long and short range Coulomb interactions are considered.
The results are applicable to arbitrary nonideal plasmas, 0 < y < Yoo where Yo

is the critical ordering parameter at which a phase transition into a

s0lid metallic state occurs.
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PHYSLOAL POURDATIONS
Subject of the theoretical considerations are quasi-homogeneous high-
pressure plasmas consisting of clectrons of charge -¢ and density n = N/V and
ions ol charge +7¢ and deasity u/2 - N/2V, with typical densities in the range
200 -3 246 -3 : 3. 40
1077 em "¢ n < 107 am ~ and temperatures of the order—of-magnitude T-10- 10 "K.
2 1.
For these conditions, the Debye radius D = [4unc” (1+2)/KT] ¢ is D = 6.901 «
| -8
(T/n(1+2) % < 10 “em, i.e., is smaller than the atomic dimension and the number
- . . , ., 3 =8
of particles in the Debye sphere would be ND 4mab™/3 < 1 for <10 “cm aund
24 -3 . . .
n~10" 'em 7. It is seen that the concept of Debye shielding completely breaks
down, and statistical theories containing the Debye length as a characteristic
parameter would be physically meaningless for high density plasmas.
The nonideal behavior of plasmas is determined by the interaction parameter
2 3
e nl/

v, which is the ratio of the Coulomb interaction energy -7 and thermal

ceneryy KT,
= Zv2n1/3/KT= 1.671 = 10—32n1/3/T. (D
- / -
It follows that 0.5Z < y ¢ 15Z for IOZUcm 3 < n < 102+cm 3 and T ~ 1()4 OK. For

v £ |, the nature of the plasma changes from a "thermally expanding” (y<1l) to
an Yelectrostatically contracting” (y»1) plasma. ¥For y»1, the collapse of the
plasma due to Coulomb attraction between clectrons and ions is inhibited by the
Fermi pressure of the electrons, i.e. by the quantum mechanical exclusion prin-
c¢iple. Thus, in the region 0 <VY < ¥y the plasma undergeoes a diffuse transi-

C
tion from a nonideal classical plasma (y < 1) to a quasi-crystalline plasma
(L ~ y < vy ), with an incomplete ordering comparable to that of a liquid.

(o]

An understanding of strongly nonideal plasmas has been attempted via the

. . . . (6-14)
model ot discrete interacting particles in a dense gas —--", For the above

rcasons, however, it appears to be a more reasonable procedure to calculate
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the thermodynamic functions of proper nonideal plasmas trow the picture of
1 collective clectron a»d ion oscillations.  In this approach, the free inter-
action energy is dJdue to the static Coulemb interaction of the e¢lectrons and
ions in their "equi.librium positions'" (tadelung e¢nerpy) and their oscillation
energies about the equilibrinm positions (plasmon energlies).
| Since the plasma volume Vocontains b oclectrons and N/7% jons, there exist
IN (hrigh=frequency branch) and 3N/7Z (Jow trequency branch) characteristic fre-
quenc ies o of Jonpitudinal oscillations. Each plasma oscillator of Trequency

w. can only have the energy (n, + )0 o =0, 0,2, .., g9 that the conccpy Fiis
i P70 :

ot a plasma stute with n, plasmons ol lrequency o, i<
L : {

E{i} = ) ufae, (2)
S d
{i}
where {1} designates the entire set ot civen cigenfroquencies w,  Ac-

cordingly, the partition function Q of the tongitudinal plasma oscillations is

Y —L{il/KT “fw . /KT .
g=1 ={l_l}l/(l—c i/, (3)
(i} N
8 From , the thermodynamic functions such as the pressure, internal energy,

entropy, ete., are derived in the usual way, c.g., the free energy of the

plasmons is

F o= -KT ln Q = KT'X In(L-¢ T /KT

{it

). (4)

in the limit V> | (he discrete cigenfrequencies w, o are replaced by con-

tinuous ones, w=w(k), in accordance with the uispersion law for space charge
waves of wave length b o= 2n/k, O < k = k.

I. klectren Uscillations.,  The hish-frequency branch of the space chavge

waves is due to lTongitudinal celectron oscillations.  Their frequency o is tor

. : ) ~ . 17
classical (n < n) and completelv degenerate (n -~ n) electrons given by 7

g '

-1 - .
meEoy l 1+ (b' /!OTT)VY (‘ r ) l o n - n
p € (&4




L 9 o n T, =y

o= 1g” .. VT -~ A k ' B

0 ’p 1+ 20m 6) (ﬁ') 2y o re) Lo v © 1

where
no= 2(2nmKT/h?) L , o
" A

Jp = (4nne- /m) ‘ ’ )

B 1
3 r o= n /s , )

e

are the critical electron densitv, the plasma [requency, and
the mean electron distance (Kt= ¢ /¢ of the ¢lectrons, and u is
2 p A%

their mass). Since k “2n/r (oscillations with X < r are
max e ¢
physically inconceivable), the electron oscillations propagate,

w = wlk) > wp , in nonideal plasmas.

2. TIon Oscillations. The low-frequency branch of the space

charge waves is essentially due to ion sound waves. Since the ions

arc presumed to be nondegenerate, the frequency of the ion oscillations

is given bykz)
. 1,
W &(k)(KiKT/M) “k (10)
wvhere
: 7ol 1) 1 “
Yk = |1 e Aalel .onoEn, (D
. hi) 7 - = 2
1+-(Ke/on).Y (kre) N
S(ky =1 yoon no, (12)
is a correction factor of magnitue-of-order 1, which shows the
influence of the elcctrons on the jon oscillations (M = mass, K, o=
c /e of the ions).
p v
In weakly nonideal plasmas, y -+ 1, the clectron sound waves are

strongly damped for wave lengths X < D, due to trapping of the resonance




electrons with thermal speeds comparable to the wave speed.  For proper
nonideal plasmas, y > 1, the number of particles in the Debve sphere

. -5
41D3/3 is no longer large compared with one and D - 10 cm is smaller

than atomic size, so that thermal Landau damping is no longer feasable.

For this reason, electron oscillations should exist for wave length
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STATUSTECAL THPRMODYNAMTOS
in the plasma under concideration, the clectrons and jons interact

through their longitudinal Coulomb fields (transverse electromagnetic

interactions are negligible for KI-me™).  the electrons (s = ¢) and

ions (s = i) have thermal velocitics ¢ and random collective mean
s

N
mass velocities voodue to their oscillatory wave motions about the
a )

e o P SR > :
equilibrium positions, so that fff“u, f de =10, and - A\ 0 where

} 3

t is the ecquilibrium velocity distribution of the gpecies s and

S

designates a spatial or temporal averape.  The resulting Hamilton function
with Coulomb interaction leads to a tree energy of the plasma of the

forn:

. v (o) . -
1= _)_.}S + LM + z.ls (13)
s=e, i s=e,1

(o) . . . . . .
' b ) is the ideal tree encrgy of the neninteracting plasma components

3

S, F,\] is the Coulomb interaction energy ot the ¢lectrons and ions in their
i

equi librium positions. Fe- i is the free concrgy of the electron and ion
sy

oscillations, i.¢. or the high and low frequency plasmons, pg. (4).
It should he noted that Eq. (9) takes inte consideration ail
signiticant short-range and long-ran;e Coulomb interactions by wmeans ol

Lthe Madelung cnergy B, and the plasmon energies ¥ . As is evident from
s

M

the Jderivation L7 of Egs. (5)=(6) and (10), in which terms of order m/M are

neglected compared to 1, FEg. (9) contains the e-e, =i, :md i-i Coulomb

-1/3
1 .

interactions at distances X >

)

. . (o .
I. Free Energy Fg ', In high pressure plasmas, the electrons are

partially Jdepenerate for densitics no+n where n = 4,828 x 10]5'[‘3/2 I(‘m—jl,

whoereas the ifons behave in general classically.  Fermi statistics gives

: . } , 18)
for the free energy of the ideal electyron pas




{
4H0 f
i
!
(0) . vy g1 e 14
P = - NKI ll_;/z(u/l\l)/bl/:y(u/kl (14)
wherc .
1 Y‘)dY
Ty = x5 EEVRNEEYS: 5
Up(u/kl) o) J[ <= KT T VY (15)
¢ + 1
0
and
n = 2(2anT/h2)3/2 Ul/q(u/KT) (16)
9)

defines the Sommerfeld integrals , and determines the chemical
potential y=p{n, 1) of the clectrons, respectively.  The free

energy of the translational degrecs of freedom of the classical,

. : . 18)
ideal ion gas is
: . e i 2\3/2 (7
pC) o vz kT 1al 2mr/ny (-n—>]. (73
i
2. Quasi-Lattice FEnergy EM' The equilibrium positions of the
electrons and ions, about which the electrostatic oscillations
occur, form an electron "lattice" and an ion "lattice', with
. , . 8)
an incomplete ordering. By means of the Fwald method , one
calculates the Coulomb ineraction energy of the quasi-cubically
centercd electron-ion lattices as
Ey = = ey NKT -, @ = a = 1.451 for v - L. (18)
As the ordering of the plasma increases with 4, (y) is a wenk
function of y such that asymptotically o = 1.541 for y == 1. Eq.(18)
. re . 5 2,= .
indicates that _hW/N ~ 72e“/r is of the order of the averago
)
e—i interaction energy. For weak ordering, v - 1, it will be sho.n

1/)

that a - vy
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3. High-Frequency Contribution Fe. Since the number of longitudinal

modes with wave numbers between k and k + dk in volume V is V&nkzdk/(Zn)3,

Bq. (4) gives for the free energy Fc of the high-irequency electron

oscillations of energy tw (k)

, k
FIRT(V/202) = fe Ln{ l-exp{-tiw(k) /KT] } k’dk

0
where
i ]/)
w(k) = w, (1+a?k?)y %

o]

P 272 =2 o
a’ = cm/wp (Ke/lm)(Z/Y)re , n<<n o,

2/3 ? -

9 71~ = >
(L/Y)re s n->n L]

1
o 202 - 9 (M yhen
a . (3/5) \)F/mp 0m 6 ) (ﬁ)

by Eqs. (5)-(6). The speed of sound o and the Fermi speed Vg
of the electrons are

1 i
c. = (KeKT/m) % , Vg = H(37°n) é/m.

The number of modes in (0, ke) and V equals the number 3N of

degrees of treedom ot the electron gas, i.e.,

k

R € 2 - ' _ 2 1/1
() v f 4nk-dk = 3N, ke = (187"n)

0

Integration of Eq. (19) by parts yields, under consideration of

k; KIV/6s” = 3NKT, for the froe energy of the high-frequency plasmons:
P RNRY T .
F_ = 3NKT €n{1l - expl - __i_.(]+avk;) - F(—E ak )
‘ KT KT
where .
hae T . . ak I “ e 1/,)
-3 . ~ e .
F(—=, akc) = -——L(nkp) v UHx0) dx T
KT KT (Hw _/KT) (14x7) 7= 1
0 (o] n
and

1 — 1y 1 1
too /KT = () A(Ae/rc) biyiy b 1, = W/ (mKT) b

(19)

(20)

(21)

(22)

(23)

(24)

(29)

26

27
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1 1 1 1 .
ak = Ke é(9ﬂ'b/4) b(Z/Y) fo , n <~ n (28)

1 1 21 1
20 B2 (m/my Py ? L a e, (29)

ak
e
By means of the successive substitutions, (i) x=sinh;, dx = cosh ¢ df

and (ii) € = (ﬁwp/KT) coshf, de = (ﬂwD/KT) sinh 7 df the Integral (26)

is transformed to

N e N N I TP I
F(ep,ake) = (akeap) f (e%~-¢ p) (e -1) ds (30)
€
P
where
ep =‘hwp/KT, €g = epcosh(arcsinh ake). (31)

Since the leading expression in Eq. (25) is the logarithmic term, it

is sufficient to give for F(cp, ake) tle series approximation (Appceniix),
- y ~ _y
2 3 2 =
F(ep,ake)/z (ake) ep

[ 8] oo 5
3 b [ -~
-me b -n (3 +n) ,9 -
e ) (2 ~ + n, -e_)m), < 3¢ , 32)
mZI P nZO (ll)( sp) " Y(Q (Ce eP) ) ‘e EP ¢

where ~

5 ~ -mu
((5 + n, (se-ep)m) =1 f u e du (33)

20)

is the incomplete gamma function—". Since in general Y/Zi'l for

tp “ ey < 3ep, the expansion (32) is useful where simple approximate

relations do not exist.
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4. Low Frequency Centribution Fi. With the number of modes in the

interval dk at k and volume V given by VunkZdk/(?u)3, Ea. (4) vields for the free

energy Fi of the low-frequency ion oscillations of energy Huw(k)

k
N i
Fi/KT(V/2'n2) = S n {1-exp[~fiw(k) /KT]} k9dk (34)
0
where
w(k) = S(k)eyk, (35}
1/,,
CM = (r.iKT/M) ‘ . (36)

by Egs. (10) and (12). The number of modes in (1, ki) and V equals

the nuwber 3N/g of degrees of freedom of the ion gas, i.e.,
i

k
-2 2 . Vi s
(2n) "V unk‘dk = 3N/Z, ki = (187%n/7) *°
0

37)

Partial integration of Eq. (34) pgives, under consideration of

ki KTV/672 = 3(N/Z)KT, for the free energy of the low-frequency plasmons:
fic

F, = 3(N/Z)KT (&”n{l-exp[- M 5({‘1)‘11” - c(ki)) (38)
. KT
where k
~ Tic - N i ' 311, e
Gk ) = oM 4 = [8R)4ks’ (o JkPak (39)
* kKT e/ RD Sk

Since the dispersion factor 6(k) is a bounded function varying very
1, -
little with k such that 1<¢&(k) & (1+2) o for k r (0, ki)’ §(k) can

be approximated by an average value &, ]

s(k) = §-°1, nid . (40)

Since in addition the logarithmic cxpression is the dominant term in Eq. (38),

the integral (39) is approximated by
F

Sy ~oA a4 i 2 3
(;(ei) = Ei“’ c\'ck"l)"l dr
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where

e = fic, Sk/KT, éi = Ticy Sk /KT. 42)

- 20
G(ei) has the semi-convergent series expansions, Ul

sy =t 32 L 10 . ’
G(bi) = 3[l Ty + 5651 +...], gy << 1, 43)
Gy =X o3 4 ofeti),

(Ei) = ]T Ci + [e ]y Ci >> 1' ([44)

This completes the formal mathematical aspects of the theory,

the physical implications of which require further elaboration,
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APPLICATIONS

For applications of the theory to strongly, intermediate, and weakly
nonideal plasmas, it should be noted that the dimensionless parameters
y/Z,‘ﬁmp/KT, a&e, and n/n occuring in Eq. (25) for the free energy ?e
of the high-frequency plasmons can not be varied independently. Since
both y/Z and Ae/;c increase with increasing n and decreasing T,
‘ﬁmp/KT - (Re/;e)(y/z)Bgvaries over a large n-T repion similar to (y/2)!,

Eq. (7). Numerically,

11 7 1 - 34
v/7 = 1.670x 10 30 B, fio /KT = 4.310x10 "ot e, n/n o= 2.071x10 Y01
~ _1/7 -
ake = 2.219(y/Z) % , n << n
- ! - 1/ _lé
ak, = 1.910(n/n) 3(v/z) 2, n>>i. (45)

. 2 -
E. g., for T=104°K, y/Z2z1 if n2 10 1cm 3 and ﬁmn/KT 21 if

- ) . q -
n 2 5x10200m 3. For T=1030K, y/Z 7 1 if n £ lﬂlgrm 3, etc. Thus,

for typical conditions of nonideal plasmas v/Z and‘ﬁmn/KT are of the
same order of magnitude. It is also recognized that in general
n/n > 1 if y/Z >> 1, and n/n<<1 if y/Z<<1.

Tn Eq. (38) for the free energy Fi of the low frequency plasmons,

~

only one characteristic parameter e, occurs since &(k)~ & ~ 1. By Eq.

i
(42), this parameter is

. fic, 8k 1 1 Y 1 VT
S SO 5 fe 23— = 215801072 BB B2 AT a1 we)
1 KT T,
1
where
1/, — -l/
A =R/ (MKT) ¢ , r, = n/z) 3 . 4n

Accordingly, for typical nonideal plasma conditions, it is £, << 1

<=1 (classical ions) although in ycneral xe/;e > 1 (degenerate

since Ai/;ii

electrons) for y/Z2>1 or ﬁmp/KT:*l.

’

it et b
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The deviation AF of the free energy of a nonideal plasma from

ideality is by Eq. (13) due to the quasi-lattice energy E, and the plasmon

M

energies Fe i
»

s> K

w

(48)

AF = B, + )
=e,i

s
. 17)

Since the theory of electron oscillations—-"has not yet been
developed for arbitrary degrees of degeneracy (ns h), the contributions
of the electron iscillations to AF in the cases n- n and nZ n have to
be estimated from the dispersion equations for n<<n [Eq. (5)] and
n >> n [Eq. (6)], respectively. Fortunately, it turns out that

{Fe|<<lAF| for y/Z>1, so that quantitatively relyable approximations

for AF can be derived.

: 1. Strongly Nonideal Plasmas. By Eq. (6) the spectrum w(k) of

electron oscillations extends over a band Aw -~ w_ above the plasma

s
- o ~ -1 . .
frequency for y/Z >»> 1 since kref ker.~1 and (n/n) éZY ~ 1. Application
of the mean value theorem for integrals to Eq. (25) shows that the free
energy Fe of the high-frequency plasmons vanishes cxnonentially for

£ > o, die, /7>

. “ 1
. - _ _ 20 2y b
Pe/3NKT (Zn{l exp( cp(l+a ke ) 41t

N

-3 ak
€ (ake) e, _y
- . YA [ x (1+x?) QdX) >0, e »oy
exp[ep(l+i?) 21-1 p
0
0>x < ak . (49)
e

Accordingly, IF;|/3NKT<< 1 for €, > 1, i.e., y/7 > 1. On the other 3
hand, the free energy of the low frequency plasmons is by Eq. (38) for

nondegenerate ions
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ﬁ' N 3(N/2)KT[£n£ -(1/3)] =
i i . Y, )
SW/2KTUy + talQen/ B S 2y sy e 1 o)
e’/H

It is noted that y/Z »> 1 is compatible with e, = ﬁcwkig/KT<< 1 as

explained above.
Equations (49) and (50) demonstrate that the contribution of the
electron oscillations to the free ecnergy is neglicible in strongly

nonideal plasmas, y/Z >> 1. 1In this limit, the nonideal part of the

free energy is due to the quasi-lattice energy EM and the ion

oscillations,

AF/NKT = - ay + (3/Z)¢ny + (3/Z)£n(BCM/vB) - /2y, ylz >> 1, (51)

where

s 1
vy = e2/%, B8 = (18122 W (52)

Note that £ny depends on both n and T whereas f“ﬁcM/vB depends only j

1
on T, where the Bohr speed is vy = 2.118 x 108cm/sec >> ey = (KiKT/M) b. ‘
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It is remarkable that the electron oscillations contribute little

to the free energy compared to the ion oscillations for y/Z = 1. This

result holds even for moderately nonideal conditions, y/Z > 1. Thus,

we disagree with the formutla "F = ne  + 3NKT(H(ﬂm“/KT)" stated without

derivation for nonideal plasmas by Norman and SLnrostinZi, according

to whom '""all the vibrations have exactly the same f{requency oy

near the plasma frequency wp". The derivation of this formula requires
; fiu(k) /KT << 1 for the electron oscillations, which implies y/Z << 1,

but the latter inequality contradicts their assumption w(k) = Wy = wp,
’ since the frequency spectrum extends over a large band Aw > mp above

w_ for y/Z << 1. For these reasons, the free energy proposed by them

is not applicable to proper nonideal plasmas, y/Z ™ 1, nor is it correct

for weakly nonideal conditions, y/Z << 1,

2. Intermediate Nonideal Plasmas. For intermediate nonideal

conditions, 1 7 y/Z < 10, the spectrum (k) of electron oscillations

~ 2 -1
extends over a region Aw - O[mp] above oy by Eq. (6) since (n/n) th <1 and

kr = k,; - 1. Also in this cae, a relatively simple formula can be

e €

-~

; devised for the free energy. The logarithmic term in Fe’ Eq. (25)

i is negliyible compared to that in ﬁi’ Eq. (38), for y/72> 1 since
o ﬂcM&ii/KT for v/Z>1 bv Yes. (45) and (46), respectively.
Accordingly, the nonideal part (48) of the frece energy is for inter-

mediate nonideal plasmas:

TEINKT = cay 4 (B2 4 (3/2) En(Rey /v = (3/2)6( )

-G Ak, vz L (33

e et
T T T T .
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For y/z -~ 1,the dons can be assumed to be non-degencrate 4 = he 6ki/KT s

M
by Eq. (46), so that the ion integral (41) reduces to
GG =173 0, <L, (54)

Since te [p 1 and dketp 21 [Eq. 45)] for /% 7 1, (he electron

integral (10) is significantly smaller than U(Li) = 1/3,
0 TG ak ) (F-e?) P (ak ¢ )—”’lr(l—c‘héc/l—érn)-< 1, v/771 (55)
rp. e o p ¢ efp’ VR s Y/ oL 30

The lower and upper lhounds of F(cp,ake) have been obtained by means of

the mean value theorem for the integral (30),

. - ~ [ 3/, LD ¢ . .
I'(Fp,ake) = (nkeep) (r:‘—af)) s f(e"—l)d» . F'p LI (56)

€
P

While for strongly nonideal conditions, the contribution of the
electron oscillations to the free energy is completely negligible,
this contribution is still insignificant for intermediate nonideal
conditions, y/Z > 1, by Eq. (55). For more exact cvaluations, the

small term F(ﬁp,ake) in Eq. (53) can be computed from Eq. (30) or (32).

3. Weakly Nonideal Plasmas. Althouch the theory of weakly

1-5). .. . . . .
1t /s interesting to investigate

nonideal systems is well understood,
wheiher the present model for proper nonideal plasmas gives reasonable
results in the limit v/Z << 1. TFor ¢/Z << 1 it is n&e »> 1 hy Eq. (45),
and the spectrum w(k) of electron oscillations extends over a large
vegion  Aw > mp above wp by kEq. (5). The electron integral becomes for
ak >> 1, "

e ak

e
- ~ 3 epX 1=l 3. e
F(cp.ake) = sp(ake) f (e"P"-1) x7dx, /7 << 1, 7)

0

° 3 -t 1 2
= I - - — - r— o - .. .' < .
T(:p,akc) /41 8(:,pake) + 20(rpnke) . e ak << 1 (58)

1
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Although tpake is independent of y/Z by Eqs. (27) .ad (28}, the expansion
(58) is valid since the clectrons are certainly rondegenerate, )U/; <o 1]

for v/7Z <1, and
b

V V _ -
9n 2763 X /v 1, » /r << 1. (59)
e e (&

. |
Cpukc = (Aﬂxe) o
For nondegenerate ions, the integral (41) is G({i) = 1/3 by Eq. (43)
since éi «~ 1. Thus, one obtains from FEqs. (18), (25) and (38) for
the interaction part of the free cenergy of weaklv nonideal plasmas:
AF/NKT = -a(y)y + (3/2)Gty + 3/2)tn ey /v )

+ 3G jak,) - asz7ly, sz--1, (60)

where the logarithmic term in Eq. (25) has been ovnanded for

¢ ak << 1.
P e

In Eq. (60), a(y) is the Madel'ng constant of the weakly nonideal

plasma with weak electron and ion ordering, aly) »0 for y-+0. Comparison
of the term —&(Y)Y(NKT) in Eq. (60) with AF =

2]

3 1 _3
—(NK'l‘)(2/3)'n1/?(l+Z) 2030 '/E(KT) b

23)

of the Debye-Hueckel theory—
(weakly nonideal plasmas) yields the result

b »

. 1 ]
aly) = /)07 Q+727Y) vy, yiZ << 1. (61)

The previous theories of weakly nonideal plasmas do not lead to the
logarithmic terms in Eq. (60) since they ’'o not take into account the
ef fects of electron and ion oscillarions.

The presented theory is applicable to nonideal plasmas in the gaseous
phase (0-y<1) and the quasi-liquid (1«3ay0) phase. Whether the Eqs. (25)
and (38) are applicable to hot (T>10°0K) plusmas in the solid phase
(y~yc) cannot be judgped at this time, since not enough is experimentally

I town about the latter, extreme state of matter.




APPENDIX: Expansion of I(Q_P,uk(_)

The integral (23) is conveniently rewritten in the forn

. ~ . -3 ~
P(Lp,aku) = (akcsp) I(tp,&) (Al)
where R
. v ¢ .\)3»/2 C o 0
(. ,e) = Ve e -1 de, R A2
ooC J ) et-D) X (A2)
t
p
Since v » 0, i.e. ¢ < 1, there exists the series expansion,
(\ -1 Xy -
(e -1) = Z e me‘ e >0 . (A3)
m=1
The substitution, u =¢ - Eb' du = de, and Eq. (A3) transform Eq. (A2) to
® €-¢€
- B P 2,) 3 -
L(e ,e) = Z e mep u A(u+2€ ) to ¢ M. (AL
p 5 P
m=
u=o

For u<f2ep, i.e., &8 < 3ep, the binomial expansion,
3 ¥ oS Y n
9 2 = (2 2 Ty (B <
(u+_ep) (.ep) Y« “)(ZCP) R u/?z:P 1, (AS)
n=0
is used, which reduces Fq. (A4) to the double series:
N 3/ ® . ® 3 - 5 -

ey = (2. 2 2 , T A no=(=+n), 3 .
I(t.p,&) = (zL.p) J ¢ p ] (n)<2sp) m v(F+ 1, (L—ep)m),
=0

m=1 n

€ < 3¢ (A6)
P

20)

is the incomplete gamma function, which is tabulated. In an
amologous way, the integral (A2) can be solved for u > ZEP, i.e.,

3¢ : .'». TN
p
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V. VARIATIONAL PRINCIPLES AND CANONICAL TiEORY
FOR MANY - COMPONENT PLASMAS WITH SELF-CONSISTENT FIELD

ABSTRACT

+ -+ -+
The Lagranglan L = ff] L(qs. Dqs,/at, V-qs)da; and Hamiltonian
> > > 3
H = ff] H(ps, 9g> V-qs)d r for many-compcnent plasmas with self-consistent field
interactions are derived. The canonical fields ;8(;,t) and ES(?,t) are defined
> -»> -+ -+ -+

by p, = m.v and Dqs/at =0V, respectively, where ns(r,t) is the density and
Jq(?,t) is the velocity of the component 8, s = 1,2,...N. Based on the action
principle, the Lagrange and Hamilton equations of motion for the components (s)
are presented as functional derivatives of L and H with respect to the canonical

» -+
momenta Py and qg- It is shown that the new formulations ¢! many-component

plasma dynamics have mathematical advantages compared with the conventional

variational principles and hydrodynamlc equations.

PR
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INTRODUCTION

1 ..
Since the work of Clebsch = it is known that the space and time dependent
. : . . Lo L 2-5
dynamics of perfect fluids can be derived from variational principles. —=
To-date, however, no variational prin-~iple has been found the extremals of
which give the Navier-Stokes equations with viscous dissipation. A comprehensive
review of the most significant contributions to variational principles in fluid
. , .6 o A i
mechanics  has been presented by Serrin. —  Similar variational principl s for
purfect one-fluid plasmas and magnetoliydrodynamic fluids have been given by
7 8
Newcomb — and Zakharov. —

Herein, a new variational principle and canonical theory fer perfect, non-
relativistic many-component plasmas is developed, in which the charged particles
interact through the self-consistent electric field. Interactions through
celf-consistent magnetic fields are neglected for non-relativistic velocities

2 of the electrons. We show that the elcctro-

v << .« and temperatures kT << mec
e
hydrodynamic equations of the components s = 1, 2, ... N of the plasma are
. . . . 9 .
derivable as functional derivatives = of the Lagrange function
-> 32 A . > 1> .
L = fffPL(r,t)d r and Hamilton function H = fff“H(r,t)d r of the plasma of
[
volume %, The Lagrange L and Hamilton H densities are functionals of the
i i - EY X -> > >
canonical congugate variables Py and q defined by P = mgvs(r,t) and
-> -> > - A . >
qu/at = n“(r,t)vs(r,t), where m is the mass, n is the density, and Vg is the
(local) average velocity of the particlcs of the $-th component.
The variational principle and canonical theory for many-component plasmas
provides a theoretical foundation for the analysis of classical phenomena such

as nonlinear electron and ion acoustic waves, space charge fluctuations,

electrostatic turbulence, and eclectrohydrodynamic initial-boundary-value




.
W

problems.  The Hamilton function and canonical formalism were derived as a
theoretical basis for a statistical mechanics of liydrodynamic plasm: fields
concerned with the evaluation of the free encrgy of electron-ion plasmas, which
are nonideal due to the self—consistent field interactions. The statistics of
fields and wave modes represents an alternative to the treatment of many-body

systems within the framework of the discrete particle picture.




VLASOV PLASMA

The subject ol consideration is a plasma consisting of an electron component
and N-1 joa components, which interact through the self-consistent electric field
> ¥
©(r,t) of all charged particles. The hydrodynamic equations for each compounent

s of the plasma are obtained as moments of the Vlasov equation for its velocity

distribution function fs(J,?,t), and are in absence of collisions (s=1,2,...N):lg
9 > > > -
s . = - VP + E 1
St (nsmsvs) + Vv (nsmsvsvs) o tongelk, (L)
3 >
— + V- = 0 2
5t s (nsvs) ? (2)
] -> -
— + V- = -(y -1)P V. 3
at Ps v (Psvs) c’s 1) s Vs ’ &
where
1 N
-> -
V'E=¢ ) ne (4)
o s s
s=1

> > >
relates the self-consistent field E(r,t) to its space charge sources ns(r,t)es.
& 1is the dielectric permittivity). The charge of the particles is e = -¢ for the
o
clectrons and ¢ =17 e, |Z | =1,2,3,..., for the ions (e is the elementary charge).
s s

The moments are the density, velocity, and pressure fields cf the s-th component,

+0
. 5> > >
n (r,t) = I fg(v,r,t)d3v ,
- *
4o
- - > > >
v (r,e) =n l [ff vt (v,r,t)d3v ,
s s o s
> +e -> > > > ->
P (r,t) = 2/ [[] km (v - v )2E (v,r,t) div,
s - s s s
: P, v .
Furthermore, m is the mass of the s particles and Yg = Cs/cs is the

adiabatic ceefficient of the s component (V is the particle velocity).
Equations (1) - (4) describe the macroscopic dynamics of an N-component

10 . ;
Vlasov plasma, — in which external magnetic fields are assumed to be absent,
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and internal magnetic fields and binary correlations are negligible.

Maxwell's cquations indicate that in the absence of magnetic fields, i = 4

VxE=0 , (5)
X N )
v ig ) n e 3 =0 . (6)
v dt . s 8 S
s=1

Thus, the self-consistent field E(;,t) is longitudinal, and the displacement
(EOBE/Bt) and convection (nSeS;S) currents annihilate themselves at every point
(;,t). This effect was first noted by Ehrenfest in his discussion of
"accelerated charge motions without electroumagnetic radiation', U Typical
examples for accelerated charge motions without transverse radiation field

are electron and ion acoustic waves, and space charge turbulence.

Substitution ot Eq. (6) into Eq. (4) yields the ‘
conservation equatinn,aé:nses/ﬂt + V-Z nseszs = 0, for the space charge. he
latter equation is, thercfore, not independent | in addition, it is obtainable
by summing Eq. (2) multiplied by e with respect to sj.

Due to the absence of i) external magnetic fields and ii)binary interactions

(vanishing viscous and thermal dissipation), the pressure in Fgs. (1) and (3) is

jsotropic. The closure of the Egs. (1)-(4) is accomplishcd by setting all

higher order moments of the velocity distribution zero, such as the off-

diagonal stress components, Hij 20, the third order hcal flux tensor,

qijk = 0, ete. The resulting electrohydrodynamic or hydrodynamic Vlasov

equiations are generally accepted in the literature.

o

ﬂ et ."" -r ‘M
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EXTREMUM PRINCIPLE

The dynamics of the many-component plasma is now condensed into a varia-

tional principle for the Lagrange integral functional L = ffoL(?,t)d3;, the

extremals of which give the Eulerian equations (1) for the components s = 1,2,...N.
1n this approach, Egqs. (2) - (4) are auxiliary cquations by means of which the
R > > > >
fields nS(r,t), Ps(r,t), and E(r,t) can be eliminated from Eq. (1). This
elimination will be carried through after introducing canonical variables.

1n analogy to the Lagrange density L(;,t) for nonconducting fluids,§> the

Lagrange density for the many-component plasma with the self-consistent field

> o>
F(r,t) is sought in the form

N P

7 = ' A‘ p 2 - —— 8 — ,V.Q ’,/I

L(r,t) Sél(znsmsvs v, -l) E (7)
|

If Eq. (7) is the correct Lagrange density, the Eulerian equations of motion

6
for the plasma components should follow from the extremum condition -—

‘, t

2
sfdtf[fL(x,0)d3F = 0, (8)
t
I
i.e.,
t2 N > > 1 > 'SP“ > > ->
fdtfff Z [nsmqu-évs+ 5 msviénq— §_::_T" COE-5E]d3r = 0. (9
t Q s=1 ) 2 s

1

R .
The Eulerian virtual displacement, o (r,t), of a mass element of the s-th com-
s

! ponent,
g (f,v) = Js(;,t)ét, (10)

vanishes at the initial (tl) and final (tz) instants of the variation of the

trajectory of the fluid element which occurs in the interval tl <t < tz,

g (r,e)) = 8, ¢ (¢,v.) =0, (11)
IS s 2




e

TRy omEmE Y

>
and is tangential to tue planes dA bounding the plasma at r = s:

o (£,0) __+di(s) = 0. (12)

The variations of the fields of cach component s are given as functionals of

3 . = d >
its displacement cs(r,t):

N
s 09 0T s -3 vy, (13)

Sv_ = — s s s s
S gt

Sn = - V.(no), (14)
S s

&P = -~ g VP -y P V-0 , (15)
S s S 8 s

SE = ‘1§ 4 (16)
E =- eogzl“sesos :

Equation (13) is obtained by setting the variation of the Lagrangian velocity
equal to the substantial derivative of the Eulerian displacement. Equations
(13)-(16) result directly from Eqs. (2), (3),and (6), by means of Eq. (10).

Substitution of Egs. (l4)-(15) into Eq. (9) gives

Lo N - S ) X
) } g - . .
- > . - - AV, — — < .
t}'dtj';flfgzzl[nsmsvs (at + vy VoS o vvs) 5 mSvSV (nsos)

1

L @G v +yPVvo)+nebBoldit=0 . a7
Yo~ 1 s s 5 S s s s s

By mecans of partial integrations, Gauss' integral theorem, and the surface

condition (12), LEq. (17) is reduced to
tz N ) .
. » > -y > Y .
- o [— . - 2 O 3 =
[atf[[ L o Gy (amv ) + v (nmv v) + WP -nekld =0 . (18)
t Q s=1
1
Since Eq. (18) is zero for arbitrary variations gs, s =1,2,...N, the integrand
in the bracket must vanish a' any point (f,t) of the plasma. Thus, the Iulerian

equat fons of motion (1) are obtained for the N components from the variational
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principle (8). This completes the proof that Eq. (7) is the correct Lagrange
density for the multicomponent plasma.

The Lagrange density L and the Hamilton density H are not only functionals
of fields of ? and t, but also depend, in gencral, explicitly on r and t. In the
following canonical theory, the explicit ;,t dependence nced not to be formally
indicated, since the virtual displacements constructing the varied paths are for

N
constant r and t.
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LAGRANGE EQUATIONS

'n the Lagrangian formulation of many-component plasma dynamics, the
Lagrangian L = fff L(;,t)d3; is expressed as a functional of the fields Es(;,t),
which will be shown to form with the fields ;s(;,t) canonical variables. These

are defined by, s = 1,2,...N:

=mv =nv
P s s’ g s s

(19)

> -> ->
Note that Py is proportional to the velocity field Vo whereas q is a t-integral
functional of the particle flux nsgs' Integration of the auxilary equations (12),

(3), (6) [Eq. (6) is equivalent to Eq. (4)], and Eq. (19) yield

> >

n, o= v, - LACTRRER T vs(r) , (20)
P =P ((v_-v-q)/n_] (21)
s  so Vs 97/ go ?

> > -1 - > > >

E =e -¢eeq, € = es(r), s (22)
> > -

v, = (aqs/at)/(vs - V:q) . (23)

-}
PSO, nso, vs,and ES are constants with respect to the integration variables.

Substitution of Eqs. (20) - (23) into Eq. (7) gives the Lagrange density of the

plasma as a functional of the Hs'

N
> > >
L= L (a,, 3a_/3t, V:q) (24)
s=1
where
-
2 -
L =% (aqs/at) Pso vs v 95 s o - -1 =+ .5
s 2ms < Y <1 ( Py ) - (ES - Co egqs) (25)
v T V-qs 8 s0 ;

is the Lagrange density of the s component. The Lagrangians of the plasma and
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its components are given by
N >
L=)L, L =[ffLd. (26)
s s s
s5=1 Q
The fields ;s and ag defined in Eq. (19) are canonical variables siuce by

Eqs. (24) - (25)

33 /3 |
> oL _ G5/t
b= —2 - —=ny . (27) |
3(3q8/3t) VS - V'q ;

Thus, by introducing the canonical variable ES, L has been decomposed into
the LS of the individual components. Note that the original Lagrange density in
Eq. (7) does not permit such a decomposition due to the coupling of the components
by the common, nonlinear field energy EOEZ/Z.

For the lLagrange density of the form of Fq. (24), the variational principle

in Eq. (8),
r » g ¢

)

2
& [ de [ff La3F = F 6 [ de [[f L3¢ = o, (28)
Q =1 t Q °

9

becomes, since the LS are independent for s = 1,2,...N,

l

5 [ de ff L @ 2q_/3t, v-q)d% = 0. (29) |
t 2
1
Hence,
£2 aL_ 2q aL .
f dt fff [-“-‘éq o 0(319)+ ~2— 8. q ld’r = 0 (30)
3(3q /at 3v- q ‘
)
where
R N . R
= )ot = = 31
(qu (aqs/at)ﬁt nSvS(St n_o (31)

8a (F,t)) = 8, 8 (F,e,) =0, sq_(r,0) _ +dh(s) =
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by Eqs. (10) - (12). By means of the partial integrations,

Y2 oL 1q al ” 2 AL
———E s () de = e e ) f R - (I € )
t. 3(aq /o) a(aq /3t) 7t > a(aq Jot)
1 s 1 1
R '.>Lq R sl
[/ r=¢ — S “dA - jff Jq V(———')d t, (34)
Q2 av-qS dV-qS
and Eq. (32), the extremum principle is reduced to
‘2 al, o 0L oL
Jaef {2 - 5 == - V=16 d% = 0 ' (35)
) ng d\uq ot) 9V "

The condition for the vanishing of this integral for arbitrary 658 leads to the

Lagrangian equation of motion of the s component of the plasma:

3 BLS al oL 5
= 2 - Lhy—=) =, (36)
It > -> > s
D(Dqs/at) 3qs V. "q,
where
N naslnt aq /3t
wo=m (—————— ) x 7 x @,__,__ ) 37
5 Sy - v v -V q
s g s

is a vector field perpendicular to dqd, aq-ﬁgsz 0 by Eq. (31). 1t is noted that
the extr.mals of Eq. (35) are undetermined up to fields

> - - > - -

w L GG (J I m J x V ox v i d for J F -V ).

s s s s s s s 5

In terms of the Lagrangian of the wulti-component plasma, Ba. (26), and

. . . 9 .
functionat derivatives,™~ the Lagrange equation (36) assumes the most general

form,
%T b ,5_15_ = ;,’q, (38)
5(aq /ot 5q )
s
where
. YL aL . aL
I I . ¢ . SL ! 3
Bl G B8 S (39)

Sy My aveq 8(aq_/at)  3(dqg /ot)
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Substitution of L&; from Fq. (25 into tg. (36) indeed yields the Fulerian

-r

cquation (1), since 5V (v 4) - v, XV xov o=
5 5 o
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HAMILTON EQUATIONS

Another important formulation of the dynamics of o many-component plarma is

»

obtained by means of the Hamilton formalism. Since p  and q  are canonical
" X

momenta, the Hamilton density of a component s is

N
R aqs
= e - 40
Hs Ps ot Ls’ (40)
i.e.
qo= 1 Uee )2 4 O (Vs ) V.qs)’s o & -1 - )2 41)
s T o (vy = Vra.) p N 0 +o7 (e, —ee g (41)
s S0
ﬁ by Eq. (25). Accordingly, the Hamilton density of the plasma is a functional of
the form
N' > -> -
{ = . . 2
t ) Hs(ps, q., V qs) (42)
s=1
3 The resulting Hamiltonians of the plasma and its components are
N >
! H=1) H, H =[[[fH d3. (43)
s=1 7 R T
j Thus, also within the Hamilton approach, o decomposition of the Hamiltonian
A
‘ H into component Hamiltonians HS is achieved, each HS depending only on the
¥

fields of the component s. This is quite remarkable, since the varicus components
s interact through the self-consistent field ﬁ(;,t). The decomposition is
physically possible, since the electriec tields of the different components
superimpose in a linear way.

The Hamilton ecquations of motion of the components s follow from the action

orinciple (29),
£y
§ [ ac [[f (5“'
Q "

Y

- H)d'F =0

D

~ Oy
i

»

c)i:.;
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which gives, since the Hamilten density is a

Ho= H G, a,, 9.0,
t Dq oH Jq
f dt fff [(""— ") Gp + p 8 (*'“‘) -
t] OPb

Interchange of the sequence of variation und

grations,

ty 2 > .
[ P 'w —8q dt—[p .vq ] - Ops_-ﬁq‘dt, (46)
' t, ot 5
:)H H
frf V6qd3 =¢- 6q :‘\—Iff (47)
2 3V, q v - q oV q

where the variation SHS satisfies the condition in Eq. (32), transform Eq. (45)

to
ty aq oH ap o
jdtjjj{(———«——)sp - Iy S 4= -
tl aps aqs

The conditions for the vanishing of this integral for arbitrary variations

- >
6pS and ng gives the Hamilton equations of motion for the plasma components s:

5q oM

4 _ oMy

at >
3
PS

-»>

Mg aHS . aHg N

ge v TV =
q, 9vrq

where
> 1 - ->
= = v
wg o ps X X P

function of the form {
B BH% ,
s » S oy
———§ -~ 47 - = .
i 6q o qS]d r=20 (45)
4, JV-q,

differentiation and partial inte-

ot
v(

91 6q }d3F = 0. (48)
ov: q

, (49)
) (50)
(51)

. 3 R -»r > R » ->
is a vector field perpendicular to §q = n v ot, i.e.,w *8q_ = 0. As above,
s s s s s

W is determined from the condition of rotational flow (& # 0 for v XV # 6)
s s ’
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By introducing the Hamiltonian of the plasma Eq. (46), and functional
dcrivativcs,g the Hamilton equations (49) - (50) are brought into the most

general form,

4
dq
0_5 ] , (52)
3t S

6ps
Dé_
BRI} , (53)
Jt e
A
where

. JH I g
SH s S _ s _o,_8 c
Sl R :; = N V(~v ) . (54)
. ps ups 4qs qS d qs

Evaluation of Eqs. (49) - (50) for the Hamilton density in Eq. (41) results in

Eq. (19) and the Eulerian equation of motion (1), respectively.

CONCLUSTIONS

Comprehensive Lagrangian and Hamiltonian mcthods have been developed for
many-component plasmas with internal interactions through the self-consistent
electric field. The theory is based on the Lagrange density (26) and the
Hamilton density (41), and the canonical variables ;S and ES defined by
Es = msis and BES/DL = nscs. respectively. 1In the limit of a single component
(N=1) and vanishing Coulomb interactions, the corresponding Lagrangc and
Hamilton equations of motion for an ordinary neutral particle gas result.

The canonical theory presented reduces the coupled partial differeutial
equations (1) - (4) for the fields 38(?,t), ns(;,t), PS(;,t), and E(?,t) to

>
a single partial differential equation for the canonical field gs(r,t). The

fundawental Lagrange cquation of motion is
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dq /0t
)]
_v.

qS

>

Bas/l)t é)qg/l)t

— )+ )V (
- V. - V-

Vs qs vs v qs

(

Y
S

Y

> s -» ~1
V(vs-V qs) + es(cS €,

v, o~ V'qq

mathematical advantages of the theory presen
plasmas with several components. In comparis

of variational principles in fluid mechanics

>
' terms of the canonical vector fields P and

>
e q.)

by Lgs. (26) and (36). From the solutions a

the original plasma fields are obtained by means of Egs.

-

2

(55)

s

O

J(F.D), 5 = 1,2,.00N, of Eq. (55),
(20) - (23). The
ted are obvious, in particular for

on with the previous formulations

1,3,4,5 which make use of an

excessive number of scalar Clebsch parameters, the present canonical theory in

Hs excells in mathematical simplicity.
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VI. DISTRIBUTION FUNCTION OF TURBULENT VELOCITIES

ABSTRACT

The Hamiltonian H and Hamilton equations of motion are derived for
-

the Fourier amplitudes ;K and q of the canonical conjugate fields ; and
> -+ > -> +> > > >
4 detined p = mv and 3q/3t = nv, where v(r,t) and n(r,t) are the velocity
and density fields of ideal, compressible gases in the state of fully
developed turbulence. A Liouville equation is presented for the
distribution function f(;i,at;{ﬁ}) in the multidimensional phase space
formed by the scalar components of the set {k)} of wave mode vectors

»

Py and HK. As an application, that stationary solution f = f(H) of the
Liouville equation is calculated, which maximizes the turbulence entropy.
It is shown that the distribution of the velocity and density fluctuations

of compressible gases is Gaussian in fully developed turbulence, in

aprecment with the experiments.
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INTRODUCTLON

The turbulence problem has aroused the interest of many celebrated

> 4)

1 L2 3
researchers, such as Reynolds 2 von KArmin , Taylor™, Heisenberg 7,

5) 6)

- v

Kolmogorov , Prandtl ", and Frenkiel ), to name only a few. In spite
8-10) , :

of all progress made to date , many experimental observations on the

turbulence phenomenon are still unexplained from first principles. One

of the most elementary experimental results is the Gaussian velocity

distribution ~ exp(—\;zlc_z) of the turbulent velocity fluctuation v in

11) '

compressible gases. The Giaussian velocity distribution of fully developed
turbulence is a fundamental fact as the Maxwellian distribution

~ exp(~%m32/KT) of the molecular velocities v in statistical equilibrium
gases.

The Maxwellian velocity distribution, which is the result of many
molecular collisions, is independent of the molecular interactions, which
have brought about the statistical equilibrium. The experiments indicate
that in fully developed turbulence, the distribution function of the
velocity fluctuations shows only in the far-out wings ;Jl+ « small deviations

11)

from the Gaussian distribution. Apparently, the distribution of the
velocity fluctions in stationary turbulence depends hardly on the viscous
momentum transfer, which is negligible for the velocity fluctuations of
large scale A»« but significant for the velocity fluctuations of small
scale A» 0, concerning the sustainment of the turbulent state since
-v2'\7k> ~ KR (4 = 20/0).

In other words, the Gaussian distribution of the velocity fluctuaticens
in fully developed turbulence is mainly sustained by nonlinear mode coupling

. , P e .
of the turbulence clements of diffcerent wave vectors k. For this reason,

it should be possible to derive the turbulent velocity distribution from

d, : "-—;.'I"T.'““"m




i gy

il !.'...

a statistical hydrodynamics of the turbulent {luid notions, without taking
viscosity into account. By Fourier analyzing the canonical conjugate
variables g(;,t) and &(?,t) of the turbulent gas, it is shown that the
Fourier amplitudes gi(t) and ai(t) satisfy Hamilton equations of motion, i.e.
the random wave modes Kk behave like quasi-particles. This makes it possible
to derive 4 Liouville equation in the hyper-space tormed by the scalar
components of the set {;g s 6{} . From this fundamental equation, the
quasi-Gaussian distribution for the turbulent velocity fluctuations is

derived as that stationary solution which maximizes the entropy of

turbulence.
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HAMILTON EQUAT]ONS

In the statistical turbulence theory to be presented, the effects of
N
viscosity are disregarded so that the random velocity field v(r,t) of the gas
BN ) ) )
is irrotational, Vxv=0, in the abscence of external forces which could

- . . v . 3 r > . 3 ]
artifically produce velocity curls. The condition Vav=0 defines longitudinal

1

or so-called "acoustic" turbulence in compressible gases.lz) It represents
a good approximation for the treatment of certain turbulence phenomenon,
such as the present calculitionof the turbulent velocity distribution.

The basis for the continuum-statistical considerations form the Hamilton
equat ions ot metion for the compressible, nonviscous gas. If G(;,t)
and n(;.t) designate the velocity and density field of the gas, respectively,
& the canonical conjugate fields 6(;,t) and J(;,t) of the gas are defined by the
proportionality (m=mass of gas molecule) and functional relatioms, respectively:

-»

6 = mv , Oa/at

4

nv . (1)

]

The Hamilton equations of motion and the Hamiltonian H of the gaseous system

of volume Q= /1SS dj; = L L L are given by:lj)
X'y 'z

oq _ 2l

ot ‘Sp . (2)

i _ S

Y 5q , (3
where

1 » F )
3 7 Q) i y-V'q
= = = (y-V-* 4 e
i Hd r , H 2m(v Veqdp o - (4)
9} o

and

ol on _ o fon

5 b ' g4 - a4 T\av-d (5

7 o > »

detines the functional detivativos]‘) [aH/nq O since H = H(p,V-q) by Eq.(4)].

In Eq. (< : = ¢ [ is the adiabatic coefficient, P and
-4, To ('n 1’/ V) ‘ * o o
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~ -~ > 4
[reference values of P(r,t) and n(r,t)] and v arc constants obtained through
integration of the polytropic energy conservation and continuity equations of the
gas, respectively.
. > > > . > -y
Since n(r,t) and v(r,t) are random turbulent fields, p(r,t) and q(r,t)

are represented as complex Fourier series,

> - > > > > - > >
P(r.t) =y pp(e) exp (ik-1r), a(r,0) = ap() exp (ik-r), (6)
>
where {k} {k}
T Vx :X Uz + + +
k = 27 -—, y T N AU =O, ._1,_2, sy =V (7)
L 1 L X,y¥,z ©
x y P
are the discrete eigenvalues (Q<®) of the wave vector K. Since the minimum

wave length A = 21I/km is of the order of the mean free path, £, one has
v =[L/£]>> 1 for l<<L.
Hamiltonian equations of motion similar to those for the canonical-

conjugate fields B(;,t) and a(;,t) can be derived for their Fourier amplitudes

Sﬁ(t) and gﬁ(t), i.e., for the individual wave modes. By Eqs. (2)-(6),
31 P H 3 iker 34 3
ol . _°P_, oA 4or _ SIRTY >, 9q = ada.
3B 5P T op d’r e 5 ot d’r qui/dt (8)
K - )
Q §
and
> i . > __->.—>- > )
T‘,mi = —(L—,_a : ?.H -V M +V - -'L,_a —QH, 'd31>* = [ e ik RS -2 d31t
o oq - |9d av-q g Vg ot
Y iy X ;
= - fzdg-ﬁ/dt , (9)

, - ik-
since fff7:A>d3r = 0 if A 1is expandable in orthogonal functions ¢ (*? = unit

i

tensor).
24
The canonical equations for the canonical-conjugate amplitudes pK(L) and

dK(t) of the individual wave modes k are by Eqs. (8)-(9):

1 (10)
dt ¢ ad_p ’

and
day _ 1 _oH (n
dt Wl 0‘5 oy :
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Equations (10) and (11) represent a complete system of coupled nonlinear
differential equations, which are antisymmetric in the k indices. These
canonical equations determine the temporal development EK(C) and ai(t) of

r o
ik-r

e
the wave modes k of spatial structure sp < ¢

In Eqs. (10)~(11) the canonical equations of the wave mode dynamics are

stated in complex form for the conjugate variables

Bﬁ = +K + iﬁﬁ Fﬁ’ ﬁﬁ = real , (12)
SR, S 3o 3 )
= R r =

a2 2 +isy, Yty SK rea’ s (13)
so that

roo_ l > > o A >

Por=5bg+r ), Ptl; (a/z2i) epp ) > (14)

1 -» > o >

Qp = 5@ + a2), p o= (/2 (ag-a ) (15)
since

% - % >

L 9 = 93 (16)

for real vector fields g(;,t) and a(;,t), Eq.(6). Substitution of Eqs.(12)-
(13) into Eqs. (10)-(11) yields the Hamilton equations for the real and

imaginary parts of the canonical conjugate mode amplitudes:

> -
dpP,» _ 1 oW dR']z o 101 (17
dt Qg dt Q9% g
»
1 o 1w
- : , P
dt @ aPlz TS 3 (18)
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LIOUVILLE EQUATION

The existence of the canonical equations (10) and (11), which are
analogous to the canonical equatiouns of a many-body system, indicates a
quasiparticle behavior of the individual wave modes. For statistical purposes,
let a large number (ensemble) of similar, turbulent gaseous systems he
introduced (each containing a sect {K} of wave modes or quasiparticles K)
in the multidemensional phase space formed Ly the real and imaginary parts
of the Fourier vector components pﬁ,i and qg,i (i=1,2,3) of the entire set
{K}defined in Eq. (7). The number of gas systems, which have their phases in
the volume clement n{£§(d6§£dﬁﬁﬁ) at the point (6&, HK;{Q}) of the phase

space, is given in terms of the density in phase space, f=f(ﬁg, HK, t; {K}), by

A - 6> 6>
dw = f(ﬁ»’ J», t; \f} y 1 (d)p+d q.), (19)
k k o k k
ik}
where
>
6: _ 3. 6> 32 32 ,
d%pp = d7PpdRy, d ap d°Qpd sy, (20)

in accordance with Eqs. (12) and (13). The phusc-space density satisfics the
continuity equation in phase space, since the number of plasma systems in the

ensemble is conserved.

of v
—_— 4 - - oy = y
ot V(k) (V(k)f) 0, (21)
where
dﬁr da—»
V,p, = S (22)
kY At de )
(K}
D J
v.,oT 2 50 o (23)
> 3‘5) Dq> ’
{k}l 0 K k

The cononical equations (L0) and (11), which determine the motion of any

point in phase space, indicate that the phase-space fluid is incompressibile,
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i L@ .- l ~ 3 A 7_%}{ I . ot ) .
AR 3, g ) S N (74)
K ~k g

Because of this property, the continunity cquation (21) ¢an be brought into the
form of the so-called Liouville equation:

o

_ oH OH o
ot

e i S S K (25)
Aﬁ_k | _ﬁ Jﬁu

This fundamental equation describes the temporal development of the distribution
in phasce space. Tt extends statistical mechanics

Lo gas continua o in

random motion.

The Hamiltonian 4 in Hq. (4) is an invariant {for a nondissipative gas.

The steady-state solutions of Eq. (29) are funcrions of H:

t = f(H) s (26)
since
af 1 JH oH gl 3 af .
— = - = § S . = - R LL I T N = 2
ot a ”dﬁ 3ﬁ_{ “ﬂ_g Aﬁﬁ) iy 0, for =11 . 27
(K}

In applications, the compact complex form (25) of the LLiouville equation
is mathematically preferable. TIn terms of real vecter components, Egs. (22)~-

(23) become

> B > >
1Y - > 1S5~
\7 b = ﬂi.‘i d.]\.k_ f].(_zlﬂ iili (28)
{k} Z dt P de o du 7 odt >
>
{k}
3 3 9 3 .
Vo = 2 A0 (29)
« . ! ‘ d ’ ¢ ; 8‘ »
1k} Z L ok T sy
{kt
Sincve the phase space {luid is incomprossiblo,v(&} . V{i} = () by Eq.(24),

substitution of Fqs.(28)~(29) into the continuity equation (21) results in

the Liouville equation in real notation:

ar_ ] Z R IL | S AT A | I
T anr AP B H’TZ N




The solution of the Louville equation pernmits the determination of the

macroscopic properties of turbulent gases a: easemble averapes. The
stat istical considerations are based on the quasi-particle character of the

individual wave nodes.,
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TURBULENCE ENTROPY

The state of stationary, {ully developed turbulence is one of maximum
probability W. Since the entropy of a turbulent system is a function
S « fn W of its probability W, the crtropy of turbulence must assume
an extremum in stationary state.
The entropy associated with the turbulent modes of the gas is defined
R . R . . -> > td
as the phase space integral over the distribution function f = f(pK,qK;{k} ):
, .6 6>
S=-xf...Jfenf T d7ppdiqr) (31)
N k k
{k}
where g is a dimensional constant. This definition of turbulence cntropy is
in complete analogy of the definition of turbulence for arbitrary nonequili-
brium systcms.ls)
The idealized description of the gas as a continuum without collisional
dissipation is reflected in the time - indepencence of the turbulence cntropy.
By Fgs. (3.), (21), and (24).

9 >

Fria kf...J] (1 + &nf) Y + V{ﬁ} . V,k»}) f TL(d6E—>d6a—*) = 0. (32).

k)




VELOCI'tY DISTRIBUTION

As an application of the canonical theory, the statistical distribution
of the random velocities in turbulent, compressible gases 1s calculated.

Let the turbulent gas be, on the average, homogeneous (n = n ) and at rest
(8]

=3 r . .
(v = 0) so that for the spatial mean values

E3 =
p = ) y q # g . (373)
The gas is assumed to be in contact with an appropriate other system which

sustains stationary, fully developed turbulence. The canonical conjucsate

(
fluctuation fields can then be e¢xpanded in the stationary Fourier SUrics:]))
R 3V > - >
p(r) = zi: Py expllk rl, q(r) = j{: quxp[ik-r], (34%)
{k} K

SK = Ijj;(r)exp -ik- r]d , (35)
Gy = QJIfq(r)GXP[ -ik-F1e% (36)

3 + -
are the complex, time-independent Fourier amplitudes of the real ficlds p(r)

and a(?):

~)*=->» —>':‘:=-> o
PY = Py, g T A - (37

The orthogonality relations for elementary vector fields of the form given in

the above Fourier expansions are

> > % 3> - -k - > > 3> .
1].(p)ﬁ-(q)ﬁ,d r = -[II;K.(HDUXPh(k - k")erld’r = Q pz q+ 'QK' -(38)

By Eq.(27), the phase space density of a conservative gas (H=L) in a

stiationary state is an arbitrary function of the Hamiltonian

. i s > - >
croeap, kP o= f[Hp, aps (k)] . (39)
stionare state, the entropy of turbulence assumes an extremun (state

Vit By Bgq. (31)
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-» v » . it . » ) - r » »
S (py HERE S el KR Y5 q.rs LN R RS e | 14 ) .
b(l)k)’qk' k1) Lf. ff(pk qk {k} ) ¥¢n (pK qk {1} )(kfd pkd q ) (40)

Accordingly, the phasc—space distribution () of stationary, folly developed

turbulence, is determined by the variational cquation

WS = - rf...f(l 40 1) o ,,kd LRI (W)

\l«'\

where

f fnn(d pqu) =0 ey
f fll N A(Ll pl{d q,) = (), [

since the number of pas systeas and the tot b enerpy arme davariant, O
wultiptication of ¥g. (42) by (a1 and A (43 by o) 27 vethiod o
ondetermined Lagraapioan raltiplices give:

(-

f - :
f’“f“" R PCI R Cov

ko

since b ds o arhdtroaov. Frovn b (A0 th dastribation faa o HTY re ] e

ter norsglication,

. b - t -
! [jf\‘: [=-H]- . (d ]yk-,U ')HJ . o

in the torm

, vl-t“((‘ UTTRAR
fHY = . e - KR S
f f (poy q L"")] \ (16';'(16(;-) ("7
TP E S e

Phe Hamiltonian in g . (4) beeomes after sobatitation of fhe expansions

in Equ. (35)=(30)

Iﬂ[ 2my e Z"‘ “"’“P'” }:xw wpliker]) (48D

’k} e

4-;"”' Zk (1’Lzhllk | ]«!'\xt (69)

r~1
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since v = n. An evident bionomial expansion and subscquent spatial integration

gives, under consideration of Eq. (38),

. I)O \ n() § . - + 1 P -2 k’ » l: > % ' - » {k' c
TS T am TR T 2 Z’t&»(l ) Gk [F hpp,dpstk) (50)
where

> » > i > r -» I3
hape,qestkl) = @l- = § e qP) Py "Dyt
kk 2 kv k+ ~
| 2™aE oL

X 7 ,
- Z(,‘)‘—'—?)-- > kT Gy

=3 n‘0 {k’(l).. (/- 1)
'(]) :(‘-'1) . R (- '
1k + ...k ]-q_(k(l) + .. +k(' x))’ (51)

vontains the terms ot third and higher orvder in the Fenricr amplitudes. The
various sums in Eg. (50) have the physical cooming of spatial averapes

(i1 vval's theorem)

- » - . ~ P
Z(i!f'qk')(i; "11-‘-") an(- nk"‘ = nn, )

.. R , ,
whie g 00y Oy and no= n - o are the toovbhalert veijocity nd dene it
tloctoations ot the compressible

Combiining ot Fqs. (A7) aad (50 vicld the ctationary distribution function

Tiv the tory: -
.-~-»»‘- an )"( + 1o -l)Z(lk )(Hf k - h()' {k})'
"" T2 K Ik 2" o (] i ’qk

o e L - - o

[exp G l’ ]f I ')\p[—lll(p' ,..- K )] i d p »d q
3 k
lkr
Leointroducing the spatial averages defioed in Fgs, (58)=(53) a physically

wore illustrative representation of the statiopary turbulence distribution

is ohtained:

S
Py = A c:«:p)'- y’u[zn“m v+ E'y]’”(n/n”) ]— :’]l(pk»,q‘;;{ky)} (55)




89

where
\‘] =[oxp (ROP € _1)'])] xp[- H(** ')-w{k)})] I d()'»d(” (56
¢ [(XP (AP ()Y J‘...J’(.XP B Pk,qks {k)} pk qk' )

The parameter 8 of the distribution, which has the dimension of o reciprocal

cnergy, is given in terms of the total turbulent cnergy ¥ ocontained in

the tluctuations through the relation

l)
~ . . . » » > 6 fy - )
D > R . - ,e ' i o ! [ s
1 Ji..f ”(Pk'qk'{) )l((H(pk‘qk,{k}){&\d Pyt g e (.7
in view of the noamalization delined o kg, 46y I /7, -1) represents the
(8]

nonturbulent or theraoal energy o the paseaus sy=tem of votume
Fg.(55) indicates tivat the distvibuticn taacr,on 200 1tor the turbulent

flactuations has the foltowing propertis

iy The distritation ot the wolocity oo tuations 00 e eenian,
1 i~
2 = nomp v . (.48)
t(v ) ¢ 2o

ii)  the distyibution of the density S hactuations is daussian,

1, =2
~ - = . 5¢
1(!]2) S e Z‘lun() " (59)

vhe hiphor crder terme in the distvibation tanction (1) f Fg. 0550 e

to h(pﬁ.qf,‘k'). Pao h D) ware ditticnlt te ob wvve o crporiment . tor the
. tollowine reasons., Thev Feprosent s soi et ol drmes iy aul -\r}'n'il;'
tluctuatioas, .o they are upobsorvab’e it the cxperizenta! detect r roe ot

cnly velacity or density tluctustions,  Tae oo M(yg,q;;'l ) i ostetl]ood
v

third ard higher order o the floctaatior amplitades and is, in peneral,
signiticantly smaller than the teading second order terms in the expansion
of H(pr,qri ik,

‘k’]k

Normal distributions of the forms given in Fgs. (58)-(»9) have beon

1)

observed in fully developed turbience of compressible pasces. Experimentally

the distribution of turbulent velocities is obtained by plotting the frequency i

of the occurence (over a larper time period) of a velocity signal with

Y > N >
amplitudes between lv! and lvl'*lAvl VS. Ivl, i.e. by a time—averaging process.
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_ 2 ~2
In the distribution function of Eq. (55), the quantities Vv and n

represent spatial averages (Eqs. (52) and (53). This formal difference

is, of course, no contradiction between cxperiment and theory, since the
time average is equal to the spatial (cnsemble) average in fullvy

developed, homogeneous turbulence. In Fig. 1, the experimental (o) and theo-
retical (=) distributions of the turbulent velocities are cumpar('d!])

1t is scen that the theoretical Caussian distribution of the turbulent
velocities s in excellent agreement with the conerimental data.

The theory presented is highly idealized since viscous and thermal
dissipation in the turbulent gas are not taken, explicitly, into account.
It represents, however, a first atteapt at extending statistical mechanics
to randon continuous media, sucl as turbnlent pases. Extensions of the

theory to include viscous and thermal) dissipation represent mainly

mathemat ical problems.
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! VII. APPENDIX: STRESS RELAXATION NAVES IN FLUIDS

] . ABSTRACT

The Navier-Stokes equations for incompressible and cowpressible fluids
are genceralized by inclusion of viscous stress relaxation, as required by
kinctic theory. Two initial-boundary-valuc problems of the nonlinear, generalized
Navier-Stokes equations are solved analytically, which describe the propagation
of transverse or shear waves due to temporal and spatial velocity pulses ;(O,t)
and J(x.O), respectively. It is shown that transverse perturbations propagate
in torm of a discontinuous wave with a finite wave speed due to viscous stress

i reloxation, whereas the conventional Navier-Stokes equations result in non-

physical solutions suggesting a diffusion process covering the entire fluid

with intinite speed,.




]8

INTRODUCTION

The nonlinear incompressible and compressible Navier-Stokes equations
represent (quasi) parabolic and hyperbolic partial differential equations,
respectively, The former propagate signals with infinite speed and the latter
propagate certain signals with finite speed in fluids. In an infinite, homo-
geneovus fluid, consider a small (linear) velocity perturbation, which is re-

presentable as the Fourier integral,

iy e ; ikt
v(r,t) = f 3(K) et KT qu s

over elementary waves of wave length » = 2n/k and frequency w(k). If the

{luid is compressible so that it sustains both pressure (p) and density )

~

perturbations, DF/Bt = Cé 9p/dt, the perturbation can propagate, e.g.,
1
=

in form of longitudinal sound waves with finite speed ¢, = (ypo/,f;-o)2 and

dispersion law
2= e K44 i(5a/30 Juwk? .
s o

In a fluid with a viscosity ., 4  perturbation may also propapate in form
of a transverse or shear wave.  If one applics the curl operation to the
incompressible or compressible Navier -Stokes cquation, a dispersion law s
fornd for the transverse perturbations which does not represent a wave

phenomenon but an aperiodic damping process with

iw = - (/o )k

O
As 1Is known, the acovstic dispersion ltaw is derived from a hyperbolic wave
cquiation, whereas the damping constant for the transverse modes follows
from the parabolic vorticity equation (which is the same for incompressible
and compressible fluids).  From experiments, however, it is established that

~ ~

transverse perturbations (V x ;k = 1k x Gk # 6) propagate as (hyperbolic)
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shear waves with finite speed.

It will be demonstrated herein that the (incompressible or compressible)
Navier-Stokes equations do not provide a correct description of shear waves.
The discrepancy between the Navier-Stokes equations and the experiments on
shear waves is resolved by introducing viscous stress relaxation, which leads
to a hyperbolic transport equation for shear waves in incompressible or com-
pressible fluids. For this reason, the transverse or shear waves represent
"stress relaxation waves".

As an illustration, two hyperbolic initial-boundary-value problems for

shear waves with stress relaxation are solved. The sclutions of the generalized

Navier-5Stokes equations with stress relaxation represent transverse waves
which are discontinuous at the wave front and have a finite wave speed,

c = (u/po‘r)}'é <w (1 is the stress rvlaxation time). The first trecats the
propagation of a shear wave into a semi-infinite fluid space, x 2 0, produced
by a temporal velocity impulse at the boundary x = 0 (accelerated wall). The
second is concerned with the propagation of a shear wave into an infinite
fluid space, -~ ® - x = + o, ciaused by a spatial velocity pulse in the plane

x = 0 at time t = 0. Both solutions are valid for nonlincar shear waves of

arbitrary intensity.
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PHYS1CAL PRINCIPLES
. . oL , .
In conventional fluid mechanics, — it is assumed that inhomogeneities
V.v, in the velocity components vj produce instantaneously viscous stresses
L] .

Il. .. Mathematically, this is expressed throupgh the phenomenological "flux" ~
1]

"force'" relation
) 2, ~
h,, = - w(V,v, +V v, - = Vv & )
ij i] ji 3 kk Tij
< ;
where |- is the viscosity and ¢ is the unit tensor. 1In a real continuum,

however, velocity inhomogeneities do not switch on viscous stresses instan-
taneously but in accordance with a relaxation process of characteristic time
o e 2D oo 3)
7. By means of the kinetic theory of gases — und liquids, -~ one can show
that the transport equation for the viscous stresses has the form of a
B . 4 - .
temporal (3/3t) and spatial (v-V) relaxation cguation,

-1 -1 2
+ o = - - v + . - RV ).
e tig T Vi A P P PR N K

This equation is approximate insofar as the the coupling ot heat flows 4y
and stresses H'j and higher order terms in the derivatives of vi are
i
2,3) . . . . . .

neglected.—’=" It has temporal and spatial derivatives as requived for a
N
r-t dependent field equation and is Galilei covariant. 1f relaxation effects
are disregarded, it reduces to the static stress cquation.

Thus, consideraiion ol viscous stress relaxation leads to a reformulation
of the conventional Navier-Stokes tiwcory of incompressiblc and compressible

fluids. In place of the Navier-Stokes equations, we have the hydrodynamic

equations with viscons stress relaxation:

N
Jv » > “ >
== 4+ v.Vv) = - V. - . Nl
O(Ot ) | ,
%% J.Vp = - pV-J .
o, > o I N
= vV A - o= - S (Vv o+ VY - ‘v 8)
Jt 1
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Egs. (1) - (3) hold for incompressible (Vev = 0) and compressible (Vev # 0)

flo . For nonisothermal systems, the transport equations for thermal energy
4,5

and heat flux have to be added to Egs. (1) -~ (3). 4,3)

N
1f . and 1 can be treated as r-independent, it is mathematically more

convenient to use instead of the tensor equation (3) the vector equation,

it— VT 0o @D + e e a2y +% VYY), (4)

<>
2ince Eq. (1) contains the force density V-:Ili. If temporal and spatial rc-
laxation of the viscous stresses is disregarded, Egqs. (1) and (4) combine to
X R . > e - 27 . : -+
the classical Navier-Stokes equation, p{(3v/at + veVv) = = Vp + 1.V2v +(1}./3)VVev.
Equations (1) - (3) represent a hyperbolic system both in the compressible
and incompressible cases. On the other hand, the conventional incompressible
Navier-Stokes ecquations are parabolic. The corresponding field equations for

incompressible fluids are obtained by setting V-G z 0 in Bqs. (2), (3), and (4).




—ﬁ———ﬂ

9>

IN1TIAL-BOUNDARY-VALUE PROBLEM FOR J(U,L)-PULSE

A simple method for the generation of transverse waves in a viscous fluid

consists in setting the plane x = 0 bounding a semi-infinite fluid (x = 0,

Ed N 4
S @) into sudden motion v, TV H(t)ey, where H(t) is the

Heaviside step function. The resulting viscous interaction between the fluid
and the accelerated wall produces a corl o ox [J] = éz v(x = O,c) at the fluid
surtface which propagates in form of a transverse wave through the fluid in

the x-direction. In this dynamic process, the {luid velocity is of the form

> > r > ng
v = {0, v(x,t), O} so that Vsv = 0v/Jy = 0 and v-Vv = 0, i.e., the fluid

mot fon behaves incompressiblie (even if the fluid is compressible) and linear.
> <> < hyad
Furthermore, veVIl = v 3l1/9y = O since Il has only a single component ny = [(x,t)
by Eq. (3), and Vp = i by Eq. (1).
Thus, Egs. (1) - (3) lead to the following initial-boundary-value problem

=
for the transverse velocity wave v(x,t) in the y-direction propagating in

{ the x-direction, as a result of the sudden wall motion in the plane x = 0:

ovo_ ol |
Dn B-L— T dX ’ (5) |
|
y Ao, Ly , (0) ‘
at * T 19X
| . |
’ v(ix = 0,t) = v H(t), tz20 . (7 <‘
vix,t = 0) =0, x>0 y (8)
i
Wwix,t = 0)/ot =0, x>0 . (9) ]
| |
| where H(t) = 0, t £ -0, and H(t) =1, ¢t 2 + O.
Fquations (5) - (6) represent a hvperbolic system, {rom which one obtains

by elimination wave equations for the stress component T v = (x,t) and the
X

velocity field v(x,t):

b an 3%
A bl e ot
e T Ot AX*-

(10)
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and
3%y 1 v R
4+ 2= 0 -
a2 T dt ¢ Ix? (1)
where
%

c = (./p 1) (12)
o

is the (maximun) speed of the stress relaxation wave. Both 1.(x,t) and v(x,L)
satisty similar (hyperbolic) wave cquations with the same wave speed c. In
the limit, 1 » 0 and ¢ » », with ¢‘1 > w/po, Eqs. (10) and (11) reduce to
parabolic equations, according to which boundary values »f II(x,t) and v(x,t)
would diffuse with infinite spced into the {luid (coanventional Navier-Stokes
theory). Accordingly, only for 1 > 0 and ¢ + «, transverse or shear waves
exist in the {luid which represent, therefore, stress relaxation waves.

According to Eq. (11) and Egqs. (7) - (9), the velocity field

vix,t) = v u(g, ) of the stress relaxation wave under consideration is des-

cribed by the dimensionless ipitial-boundary-valuc problem:

PR T Y , (13)
w(y, = 0, £) = H(D), 20, s (14)
u(e, t =0y =0, 7>0 , (15)
du(e, t =0)/3t =0, ¢ >0 , (16)
where

u(n,t) = vix,t)/v, &= x/ct, £ = t/t . (17)
Equation (13) - (16) are solved by means of the Laplace transform

“' technique ) which gives

w(in,s) = Llu(e,t)] = f 5w, at (18)

0

- ) 3 §3 —S.{- .—l
u(0,s) = Llu(t, )] = [ e H(OdT = & .
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Since the initial conditions (15) ~ (16) vanish, Eqs. (13) - (1l4) yield for

the transformed velocity u(£,s) the ordinary boundary-value problem,

.-
%’; - (82 + 8)T = 0 : (20)
SE=10,5) = s+ ) (21)

Since u(¢,s) must be finite for £ » «, the solution of Eqs. (20) - (21) is

1 —(a2 e
B(e,s) = st ST TS . (22)

The inverse Laplace transform gives for the velocity field the complex

integral yHie , N
-1 - 2 + |
(e, t) = ani) [ s teT(ST ST Sty (23) ﬁ
y-ie ]
! Hence, .
?
. u(g,t) = 3e(g,L)/o¢g (24)
where :
Y+ie !
1 -1 =
26,0 = - 5= [ ¢LE(e,s)e%%s (25)
274 .
y~iw
and
1
- —(s2 2 L
g; F(e,s) = e 8 7876 (52 4 )% . (26)
According to a known inversion integral,ég the inverse transform of Eq. (26) is

s D

-1 — L 1
£(5,0 = IHEE,0)] = e 701 t? - 6% net - o) (21)

O L

where Iv(t) is the modified Ressel function of order v. By Eq. (25),

1 i s A ey A

z
1 [s_l f(g,s)) = - g L—llf(é’s)]dt

b o(g,t) = - L
: . f
= - [ (g, 0)at , (28)
0 f
i.e. ;
2 Ly 1 ;
(£, ) = - H(t - €) [ e * "1 (3(a® - £%) %) da . (29) |
£
From this potential, the dimensionless velocity field is obtained as

! 5., Fohu -5 ks
£ u(g,t) = H(E - &) [e *"+ % [ e ™ (a2-€2) 7 1, (4(a? - £%) %) da] (30)
2 :
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in accordance with Eq. (24). By Eq. (17), the corresponding dimensional

solution for the velocity field is

v(x,L) = ;H(CL— x) {e-x/ZCI
t/1 . | N
+ (x/2c1) e °% (02~ (x/c1)?] ® Il(¥[u2 - (x/e)?]Pdal. an
x/ct

Eq. (31) indicates that the transverse stress relaxation wave is dis-
continuous at x = ct, the position of the wave front at time t. At any time
0 <t I ~, only the region 0 £ x £ ct of the fluid is excited by the wave,
since v(x < ct, t) > 0 and v(x > ct, t) = 0 by Eq. (31). The velocity signal
v(0,t) = v H(t) generated at the boundary x = 0 at time t is thus transported

1
with finite speed ¢ = (p /po'r)/2 < o in form of a discontinuous wave into the

fluid space x > 0 as t > 0 increases.

1
Application of the asymptotic formula lo(z) ~ ez/(sz)é, |z] >> 1, and
1
expansion of z = %[a? - (x/c1)2])? for large w-values in Eq. (31) yields, in

the limit 1 > 0, c1 > 0O:
- T o-82 TR
v(x,t) = v(2//n) [ e dp, n = x/2G-0) - (32)
n Q
This is the familiar solution of the parabolic Navier-Stokes cquations due
7

to Stokes.~) Eq. (32) suggests that v(x,t) > 0 throughout the entire fluid
0 " x S« for any, no matter how small time t > 0. Thus, the parabolic

Stokes solution gives a completely misleading picture for a shear wave in

form of a diffusion process which spreads with infinite speed.

Fig. 1 shows u(i,t) versus § for € = ]00, 10], 102, with wave fronts at
& = 100, lOl, 102. It is seen how the perturbation u(0,f) = H({) produced at the
wall ¢ = 0 moves in form of a discontinuous wave into the fluid space § 20
so that an increasing but finite region 0 = ¢ < é of the fluid is set into motion

with increasing t. JTun the limit ¢ = », u(f,€) = | throughout the fluid,

« <

0~ & “en

e
™~

P
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IN1TIAL-BOUNDARY-VALUE PROBLEM FOR J(X,O)—PULSE

Another fundamental method for shear wiave generation makes use of a velocity
-> >
pulse vo==v(x,0)ey generated of time t = 0 within a limited region le < hx.
The decay of this velocity pulse occurs in form of a shear wave with velocity

ficld v = {0, v(x,t), 0} in the y-direction propagating in the x-directions.

Accordingly, Vev = dv/dy =0, vevv = 6, and C-§H’= vilij3y = 6, since T has
only a single component ny = N(x,t). Again, the stransverse weve ''behaves"
incompressible and linear, and Vp = ] by Fq. (1).

As in the previous problem, Egs. (1) - (3) give the wave Egs. (10) and
(11) for TN(x,t) and v(x,t), respectively. Hence, the shear wave produced by

the velocity pulse 30 = v(x,O)Zy is described by the initial-boundary-value

problem:
3% 13v_‘22_)_2v 33
7eZ T RAe TR (33)
| vix,t = 0) = vo(x) ., x| DR , (35)

Yyv(x,t =033t = WO(X) , lxl o0 s (35)

where lwo(x)l Z 0 is included for reasons of generality. The solution of

Eqs. (33) - (35) is accomplished by means of Riemann's method, 8)
—t/21 x+ct
v(x,t) = e %[vo(x—ct) + vo(x+ct)] + % f ¥(x,t,a)da} (36)
X-Cct

T te

where

. %
Y(x,t,u) = vo(a)(t/ZT) 11(5%? [c2t? - (a - X)Z]%)/[CQtz - (a - x)?)*

1 1 1 2.0 RYLT
+ . [wo(a) + P vo(a)] IO(ZCT [c=t (a - x)°1°%) . (37)
As a concrete example for the initial conditions in Egqs. (34) - (35), an

initial velocity distribution of the form of a Dirac pulse is chosen,

vo(x) = 606(x), wo(x) = 0, [ =

o
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In this case, the general solution in Eqs. (36) - (37) becomes, in diuen-

3 sionless form, ]

w(E,t) =5 et [6(6- )+ s(L+ 1) '

L p )
+ (2= 215/ 182 - 217 + 1 ([ - ¢219)], el 2 2
t, (39)

=0 > Igl ’
where
u(s,t) = V(X,t)/(VO/ZCT), £ = xf2ct, T=t/21 . (40)

3; Eq. (39) indicates that the shear wave spreads in the space l€ L = in

form of a symmetrical wave, u(- £,%) = u(+ £,%) due to the symmetry of the
initial conditions (38). The wave is discontinuous at its fronts § = ¢ £,

f‘ which propagate with the speed
" V(;,t) =t c, X =t ct . (41)

In the limit « > 0, ¢t » 0, application of the asymptotic formula
~ &% % . D (a2 _ f21%
Iv(z) e /(2uz) =, |z| >> 1, and expansion of z = [a“ - £“]* for large n-values

'J in Eq. (39) yields

b -y -g2/2t <

d u(e,1) = (2nt) % e &e/ . IEI -« . (42)
!

% This is the corresponding solution of the parabolic Navier-Stokes equations.

? Eq. (42) would indicate that the shear wave has the form of a Gaussian ex-

4 tending from £ = -» to £= +« for any, no matter how small time £ > 0 (cor-

responding to an infinite speed of propagation). It is obvious that the
solution (42) is physically not meaningful.
In Fig. 2, the dimensionless velocity field u(g,f) of the shear wave is !

shown versus ¢ for { = 100, 101, 102, the wave fronts being in each case at

£, = ¢+ {. Due to the finite wave speed ¢, the fluid is not excited in the

region |#]| > t ahead of the wave fronts. The shape of the wave is flat

-—

§ - - N S s - =~
e RS PRAEYTE W - v
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with relatively steep flanks leading to the discontinuous fronts. Thus,

the shear wave does not resemble the Gaussian of the parabolic theory, Eq. (40).
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CONCLUSTONS

A generalization of the Navier-Stokes equations is presented considering
viscous stress relaxation, which results in a physically meaningful theory for
transverse waves in viscous fluids. The fundamental speed of the stress

3
relaxation waves is given by ¢ = (u/pT)°, where yu is the viscosity, p is the
Jdensity, and 1 is the relaxation time of the stress tensor. For any medium,9)
it is ¢ i-cs, where . is the speed of the longitudinal waves, e.g.,
5 -1 5 -1 o
c=1.3x 107 cm sec ~ and ¢, = 1.5 x 107 cm sec - for waterat T = 20°C and
=1 .
p0 atm
Exact solutions are derived for stress relaxation waves propagating in
>
the x-direction due to velocity pulses v(0,t) and 3(x,0) in the y-direction,
respectively. For the geometry of these transverse waves, the nonlinear,
gen2ralized Navier-Stokes equations become linear, so that the solutions given
hold for waves of arbitrary intensity. The solutions are discontinuous at
the wave fronts, which is typicai for hyperbolic field equations. The corres-
ponding solutions of the conventional Navier-Stokes equations indicate a
diffusion process with infinite wave speed, i.e., give a qualitatively and
quantitatively insufficient picture of the propagation of transverse waves
in fluids.

In the simplified stress relaxation equation (3) proposed, the term
ro> > 2
*%V ig neglected since it is of the order-of-magnitude of (u/1){W|2,
which is nonlinear in the derivatives. 1t should be noted that the term
“«> > >
lI*Vv vanishes exactly for the wave problems treated above,H'V3=6 since ; =

<>
{0,v(x,t),0} and Il has only a single component nxy(x,t). For this
reason, the solutions presented are exact solutions of the nunlinear

Navier-Stokes equations with viscous stress relaxation.

| -
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